您好,欢迎访问三七文档
第4章模糊控制4.1模糊控制的基本原理模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过程的一种智能控制方法。该方法首先将操作人员或专家经验编成模糊规则,然后将来自传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输入,完成模糊推理,将推理后得到的输出量加到执行器上。4.1.1模糊控制原理图模糊控制原理框图模糊控制器(FuzzyController—FC)也称为模糊逻辑控制器(FuzzyLogicController—FLC),由于所采用的模糊控制规则是由模糊理论中模糊条件语句来描述的,因此模糊控制器是一种语言型控制器,故也称为模糊语言控制器(FuzzyLanguageController—FLC)。4.1.2模糊控制器的构成模糊控制器的组成框图如图所示。图模糊控制器的组成框图•1.模糊化接口(Fuzzyinterface)•模糊控制器的输入必须通过模糊化才能用于控制输出的求解,因此它实际上是模糊控制器的输入接口。它的主要作用是将真实的确定量输入转换为一个模糊矢量。对于一个模糊输入变量e,其模糊子集通常可以作如下方式划分:•(1)={负大,负小,零,正小,正大}={NB,NS,ZO,PS,PB}•(2)={负大,负中,负小,零,正小,正中,正大}={NB,NM,NS,ZO,PS,PM,PB}•(3)={大,负中,负小,零负,零正,正小,正中,正大}={NB,NM,NS,NZ,PZ,PS,PM,PB}用三角型隶属度函数表示如图所示。图模糊子集和模糊化等级•2.知识库(KnowledgeBase—KB)•知识库由数据库和规则库两部分构成。•(1)数据库(DataBase—DB)数据库所存放的是所有输入、输出变量的全部模糊子集的隶属度矢量值(即经过论域等级离散化以后对应值的集合),若论域为连续域则为隶属度函数。在规则推理的模糊关系方程求解过程中,向推理机提供数据。•(2)规则库(RuleBase—RB)模糊控制器的规则是基于专家知识或手动操作人员长期积累的经验,它是按人的直觉推理的一种语言表示形式。模糊规则通常有一系列的关系词连接而成,如if-then、else、also、end、or等,关系词必须经过“翻译”才能将模糊规则数值化。最常用的关系词为if-then、also,对于多变量模糊控制系统,还有and等。例如,某模糊控制系统输入变量为(误差)和(误差变化),它们对应的语言变量为E和EC,可给出一组模糊规则:•R1:IFEisNBandECisNBthenUisPB•R2:IFEisNBandECisNSthenUisPM•通常把if…部分称为“前提部,而then…部分称为“结论部”,其基本结构可归纳为IfAandBthenC,其中A为论域U上的一个模糊子集,B是论域V上的一个模糊子集。根据人工控制经验,可离线组织其控制决策表R,R是笛卡儿乘积集上的一个模糊子集,则某一时刻其控制量由下式给出:•式中×模糊直积运算;•°模糊合成运算。•规则库是用来存放全部模糊控制规则的,在推理时为“推理机”提供控制规则。规则条数和模糊变量的模糊子集划分有关,划分越细,规则条数越多,但并不代表规则库的准确度越高,规则库的“准确性”还与专家知识的准确度有关。RBAC•3.推理与解模糊接口(InferenceandDefuzzy-interface)•推理是模糊控制器中,根据输入模糊量,由模糊控制规则完成模糊推理来求解模糊关系方程,并获得模糊控制量的功能部分。在模糊控制中,考虑到推理时间,通常采用运算较简单的推理方法。最基本的有Zadeh近似推理,它包含有正向推理和逆向推理两类。正向推理常被用于模糊控制中,而逆向推理一般用于知识工程学领域的专家系统中。•推理结果的获得,表示模糊控制的规则推理功能已经完成。但是,至此所获得的结果仍是一个模糊矢量,不能直接用来作为控制量,还必须作一次转换,求得清晰的控制量输出,即为解模糊。通常把输出端具有转换功能作用的部分称为解模糊接口。•综上所述,模糊控制器实际上就是依靠微机(或单片机)来构成的。它的绝大部分功能都是由计算机程序来完成的。随着专用模糊芯片的研究和开发,也可以由硬件逐步取代各组成单元的软件功能。4.1.3、模糊控制系统的工作原理以水位的模糊控制为例,如图4-4所示。设有一个水箱,通过调节阀可向内注水和向外抽水。设计一个模糊控制器,通过调节阀门将水位稳定在固定点附近。按照日常的操作经验,可以得到基本的控制规则:“若水位高于O点,则向外排水,差值越大,排水越快”;“若水位低于O点,则向内注水,差值越大,注水越快”。根据上述经验,按下列步骤设计模糊控制器:h图4-4水箱液位控制1确定观测量和控制量定义理想液位O点的水位为h0,实际测得的水位高度为h,选择液位差将当前水位对于O点的偏差e作为观测量,hhhe02输入量和输出量的模糊化将偏差e分为五级:负大(NB),负小(NS),零(O),正小(PS),正大(PB)。根据偏差e的变化范围分为七个等级:-3,-2,-1,0,+1,+2,+3。得到水位变化模糊表4-1。变化等级隶属度-3-2-10123PB000000.51PS000010.50O000.510.500NS00.510000模糊集NB10.500000表4-1水位变化划分表控制量u为调节阀门开度的变化。将其分为五级:负大(NB),负小(NS),零(O),正小(PS),正大(PB)。并根据u的变化范围分为九个等级:-4,-3,-2,-1,0,+1,+2,+3,+4。得到控制量模糊划分表4-2。变化等级隶属度-4-3-2-101234PB00000000.51PS000000.510.50O0000.510.5000NS00.510.500000模糊集NB10.50000000表4-2控制量变化划分表3模糊规则的描述根据日常的经验,设计以下模糊规则:(1)“若e负大,则u正大”(2)“若e负小,则u正小”(3)“若e为0,则u为0”(4)“若e正小,则u负小”(5)“若e正大,则u负大”上述规则采用“IFATHENB”形式来描述:(1)ife=NBthenu=NB(2)ife=NSthenu=NS(3)ife=0thenu=0(4)ife=PSthenu=PS(5)ife=PBthenu=PB根据上述经验规则,可得模糊控制表4-3。表4-3模糊控制规则表若(IF)NBeNseOePSePBe则(THEN)NBuNsuOuPSuPBu4求模糊关系模糊控制规则是一个多条语句,它可以表示为U×V上的模糊子集,即模糊关系R:其中规则内的模糊集运算取交集,规则间的模糊集运算取并集。)PB(PB)PS(PS)O(O)NS(NS)NB(NBRueueueueue00000000000000000000000000000000000000000000000000005.05.000000005.00.100000005.01000005.01NBNBue000000000000000000000000000000000000000005.00.15.00000005.05.05.00000000000000005.015.00000015.00NSNSue0000000000000000000000000000005.05.05.00000005.00.15.00000005.05.05.00000000000000005.015.0000005.00.15.000OOue00000000005.05.05.00000005.00.15.00000000000000000000000000000000000000000005.00.15.00000005.00.10000PSPSue0.15.000000005.05.000000000000000000000000000000000000000000000000000000.15.000000000.15.000000PBPBue0.15.000000005.05.05.05.00000005.00.15.05.05.00000005.00.15.00000005.05.05.00.15.00000005.05.05.05.000000005.00.1R由以上五个模糊矩阵求并集(即隶属函数最大值),得:5模糊决策模糊控制器的输出为误差向量和模糊关系的合成:当误差e为NB时,控制器输出为ueu000005.00.1e000005.05.05.010.15.000000005.05.05.05.00000005.00.15.05.05.00000005.00.15.00000005.05.05.00.15.00000005.05.05.05.000000005.00.1000005.01Reu6控制量的反模糊化由模糊决策可知,当误差为负大时,实际液位远高于理想液位,e=NB,控制器的输出为一模糊向量,可表示为:如果按照“隶属度最大原则”进行反模糊化,则选择控制量为,即阀门的开度应关大一些,减少进水量。403020100015.025.035.041u4u仿真:按上述步骤,设计水箱模糊控制的Matlab仿真程序。通过该程序,可实现模糊控制的动态仿真。模糊控制响应表见表4-4所示。取偏差e=-3,运行该程序,得u=-3.1481。表4-4模糊控制响应表e-3-2-10123u-3-2-10123四、模糊控制器结构在确定性控制系统中,根据输入变量和输出变量的个数,可分为单变量控制系统和多变量控制系统。在模糊控制系统中也可类似地划分为单变量模糊控制和多变量模糊控制。1单变量模糊控制器在单变量模糊控制器(SingleVariableFuzzyController—SVFC)中,将其输入变量的个数定义为模糊控制的维数。(1)一维模糊控制器如图所示,一维模糊控制器的输入变量往往选择为受控量和输入给定的偏差量E。由于仅仅采用偏差值,很难反映过程的动态特性品质,因此,所能获得的系统动态性能是不能令人满意的。这种一维模糊控制器往往被用于一阶被控对象。(2)二维模糊控制器如图所示,二维模糊控制器的两个输入变量基本上都选用受控变量和输入给定的偏差E和偏差变化EC,由于它们能够较严格地反映受控过程中输出变量的动态特性,因此,在控制效果上要比一维控制器好得多,也是目前采用较广泛的一类模糊控制器。(3)三维模糊控制器如图所示,三维模糊控制器的三个输入变量分别为系统偏差量E、偏差变化量EC和偏差变化的变化率ECC。由于这些模糊控制器结构较复杂,推理运算时间长,因此除非对动态特性的要求特别高的场合,一般较少选用三维模糊控制器。模糊控制系统所选用的模糊控制器维数越高,系统的控制精度也就越高。但是维数选择太高,模糊控制规律就过于复杂,这是人们在设计模糊控制系统时,多数采用二维控制器的原因。2多变量模糊控制器一个多变量模糊控制器(MultipleVariableFuzzyController)系统所采用的模糊控制器,具有多变量结构,称之为多变量模糊控制器。如图4-6所示。要直接设计一个多变量模糊控制器是相当困难的,可利用模糊控制器本身的解耦特点,通
本文标题:洗衣机模糊控制
链接地址:https://www.777doc.com/doc-3091384 .html