您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 02 染色体与DNA-1
第二章染色体与DNA染色体DNA的结构DNA的复制DNA的修复DNA的转座分子生物学研究已经证实,DNA控制了生物的性状遗传。无论DNA或RNA,都是由许许多多个核苷酸连接而成的生物大分子,而每个核苷酸又由磷酸、核糖和碱基3部分组成。碱基结构式2.1染色体(Chromosome)2.1.1染色体概述染色体在遗传上起着主要作用,因为亲代能够将自己的遗传物质以染色体(chromosome)的形式传给子代,保持了物种的稳定性和连续性。染色体与染色质染色体(chromosome)是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。真核生物的染色体在细胞生活周期的大部分时间里都是以染色质(chromatin)的形式存在的。染色质是一种纤维状结构,叫做染色质丝,它是由最基本的单位——核小体(nucleosome)成串排列而成的。原核生物(prokaryote)2.1.2真核生物染色体的组成作为遗传物质,染色体具有如下特征:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。1、组蛋白染色体蛋白主要分为组蛋白和非组蛋白两类。真核细胞的染色体中,DNA与组蛋白的质量比约为1:1。DNA、组蛋白和非组蛋白及部分RNA(尚未完成转录而仍与模板DNA相连接的那些RNA,其含量不到DNA的10%)组成了染色体。组蛋白是染色体的结构蛋白,分为H1、H2A、H2B、H3及H4五种,与DNA共同组成核小体。组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。H2A、H2B介于两者之间。{组蛋白:H1H2AH2BH3H4非组蛋白}核小体{DNA蛋白质染色体■进化上的极端保守性保守程度:H1H2A、H2BH3、H4不同种生物组蛋白的氨基酸组成十分相似。牛、猪、大鼠的H4氨基酸序列完全相同,与豌豆序列相比也只有两个氨基酸的差异。组蛋白的一般特性上海生化所分子遗传学1998年试题:在真核生物核内。五种组蛋白(H1H2AH2BH3和H4)在进化过程中,H4极为保守,H2A最不保守()■无组织特异性只有鸟类、鱼类及两栖类红细胞染色体不含H1而带有H5,精细胞染色体的组蛋白是鱼精蛋白。■肽链氨基酸分布的不对称性碱性氨基酸集中分布在N端的半条链上,而大部分疏水基团都分布在C端。碱性的半条链易与DNA的负电荷区结合,而另外半条链与其他组蛋白、非组蛋白结合。■H5组蛋白的特殊性:富含赖氨酸(24%)在细胞周期特定时间可发生甲基化、乙酰化、磷酸化和ADP核糖基化等。H3、H4修饰作用较普遍,H2B有乙酰化作用、H1有磷酸化作用。所有这些修饰作用都有一个共同的特点,即降低组蛋白所携带的正电荷。这些组蛋白修饰的意义:一是改变染色体的结构,直接影响转录活性;二是核小体表面发生改变,使其他调控蛋白易于和染色质相互接触,从而间接影响转录活性。组蛋白的可修饰性表2-5真核细胞染色体上的组蛋白成分分析表2-6不同组蛋白分子中所含的碱性氨基酸比较(占氨基酸总数的%)非组蛋白约为组蛋白总量的60%~70%,可能有20~100种(常见的有15~20种),主要包括酶类、与细胞分裂有关的收缩蛋白、骨架蛋白、核孔复合物蛋白以及肌动蛋白、肌球蛋白、微管蛋白、原肌蛋白等。简述真核生物染色体上组蛋白的种类,组蛋白修饰的种类及其生物学意义中国科学院2003年硕士研究生入学《生物化学与分子生物学》试题1)C值反常现象(C-valueparadox)C值是一种生物的单倍体基因组DNA的总量。C值往往与种系进化的复杂程度不一致,某些低等生物却具有较大的C值,这就是著名的“C值反常现象”。真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开。C值矛盾2、DNA同类生物不同种属之间DNA总量变化很大。从编码每类生物所需的DNA量的最低值看,生物细胞中的C值具有从低等生物到高等生物逐渐增加的趋势。简述DNA的C值以及C值矛盾(CValueparadox).中科院上海生化所98年上海第二军医大:C值矛盾真核细胞DNA序列可被分为3类:(1)不重复序列。在单倍体基因组里,这些序列一般只有一个或几个拷贝,它占DNA总量的10%~80%。不重复序列长约750~2000bp,相当于一个结构基因的长度。蛋清蛋白、蚕的丝心蛋白、血红蛋白和珠蛋白等都是单拷贝基因。(2)中度重复序列这类序列的重复次数在101~104之间,占总DNA的10%~40%,如小鼠中占20%,果蝇中占15%,各种rRNA、tRNA以及某些结构基因如组蛋白基因等都属于这一类。(图2-6)图2-6非洲爪蟾的rRNA基因结构示意图(3)高度重复序列——卫星DNA只存在于真核生物中,占基因组的10%~60%,由6~100个碱基组成,在DNA链上串联重复高达数百万次。因为卫星DNA不转录,其功能不详。它们是异染色质的成份,可能与染色体的稳定性有关。3、染色质与核小体(nucleosome)Nucleosome、chromosome、genome中科院2002年硕士学位研究生入学分子遗传学试题(1)定义:用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核构成的。(2)核小体的结构电镜下看到的染色质结构Nucleosome(核小体)是染色质的基本结构单位,由~200bpDNA和组蛋白八聚体组成DNA+Histoneoctamer(组蛋白八聚体)→Nucleosomecore(核小体核心146bp)+H1→Chromatosome(染色小体166bp)+linkerDNA→Nucleosome(核小体)(~200bpofDNA)Histoneoctamer(组蛋白八聚体)NucleosomecoreTopviewSideview核小体单元的产生核小体由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA组成。八聚体在中间,DNA分子盘绕在外,而每个核小体只有一个H1,分布在核小体的外面。核心颗粒包括组蛋白八聚体及与其结合的146bpDNA,该序列绕在八聚体外面1.75圈,每圈约80bp。由许多核小体构成了连续的染色质DNA细丝。中国科学院上海生化与细胞所2002年招收硕士研究生分子遗传学入学考试:简述真核细胞内核小体与核小体核心颗粒的结构。(3)染色体的包装—超螺旋结构6.8:140:11000:18000:1DNAdoublehelixNucleosome(10nmfiber)30nmFiberLoopsILoopsIIchromosome染色体DNA结构示意图两段各含10个螺旋的染色质一个螺旋中包含30个莲座状结构每个莲座状结构中都有6个环状DNA每个环状结构中含有75000bp30nm结构:Solenoid(螺线管)染色体DNA的念珠状结构双链DNA在核小体中,DNA盘绕组蛋白八聚体核心,使分子收缩1/7。人中期染色体中含6.2×109碱基对,其理论长度应是200cm,这么长的DNA被包装在46个5μm长的圆柱体(染色体)中,其压缩比约为104。分裂间期染色质比较松散,压缩比大约是102~103。染色体形成过程中长度与宽度的变化上海第二军医大硕士研究生入学考试试题:基因组的特点(真核、原核比较)2.1.3原核生物和真核生物基因组结构特点比较原核生物的基因组很小,大多只有一条染色体,且DNA含量少,如大肠杆菌DNA的相对分子质量仅为4.6×106bp,其完全伸展总长约为1.3mm,含4000多个基因。原核生物基因主要是单拷贝基因,只有很少数基因(如rRNA基因)以多拷贝形式存在;整个染色体DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。1、原核生物基因组细菌DNA是一条相对分子量在109左右的共价、闭合双链分子,通常也称为染色体。箭头处为环状质粒DNA。大肠杆菌细胞中基因组DNA的电镜显微照片原核细胞DNA特点:1、结构简炼。原核DNA分子的绝大部分是用来编码蛋白质的,只有很小一部分控制基因表达的序列不转录。如在ΦX174中不转录部分只占4%左右(217/5386),T4DNA中占5.1%(282/5577)。2、存在转录单元原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成转录单元并转录产生含多个mRNA的分子,称为多顺反子mRNA。3、有重叠基因。一些细菌和动物病毒存在重叠基因,同一段DNA能携带两种不同蛋白质的信息。1973年,Weiner和Weber在研究一种大肠杆菌RNA病毒时发现,有两个基因从同一起点开始翻译,一个在400bp处结束,而在3%的情况下,翻译可一直进行下去直到800bp处碰到双重终止信号时才停止。1977年,Sanger正式发现了重叠基因:ΦX174感染寄主后共合成9个蛋白质,相对分子质量约2.5×105,相当于6078个核苷酸,而病毒DNA本身只有5375个核苷酸。Sanger在弄清ΦX174DNA的全部核苷酸序列及各个基因的起迄位置和密码数目以后发现,9个基因中有些是重叠的。X174D-E-J-F-G-HmRNA蛋白J、F、GHDEE.coli色氨酸操纵子9个顺反子9个酶(第六章)基因内基因部分重叠基因一个碱基重叠2、真核生物基因组结构特点●真核基因组结构庞大3×109bp、染色质、核膜●单顺反子●基因不连续性断裂基因(interruptedgene)、内含子(intron)、外显子(exon)●非编码区较多多于编码序列(9:1)●含有大量重复序列2.2DNA的结构1)概念指4种脱氧核苷酸的连接及其排列顺序,DNA序列是这一概念的简称。碱基序列2.2.1DNA的一级结构2)特征:●双链反向平行配对而成●脱氧核糖和磷酸交替连接,构成DNA骨架,碱基排在内侧●内侧碱基通过氢键互补形成碱基对(A:T,C:G)。3)DNA结构的表示法2.2.2DNA的二级结构1)定义:指两条多核苷酸链反向平行盘绕所产生的双螺旋结构。绕DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。DNA双螺旋模型是哪年由谁提出的?简述其基本内容.为什么说该模型的提出是分子生物学发展史上的里程碑,具有划时代的贡献?浙江大学医学院2003生物化学(硕士)2)分类:右手螺旋:A-DNA,B-DNA左手螺旋:Z-DNAABZABZ2.2.3DNA的高级结构1)定义:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。是一种比双螺旋更高层次的空间构象。2)主要形式:超螺旋结构(正超螺旋和负超螺旋)线状DNA形成的超螺旋环状DNA形成的超螺旋拓扑异构酶or溴化乙锭拓扑异构酶or溴化乙锭DNA扭曲与双螺旋相同(拧紧)DNA扭曲与双螺旋相反(松开)负超螺旋松弛DNA正超螺旋2.3DNA的复制DNARNA蛋白质复制转录翻译逆转录RNA复制内容提要:●DNA的半保留复制●与DNA复制有关的物质●DNA的复制过程(大肠杆菌为例)●DNA复制的其它方式●真核生物中DNA的复制特点1、定义:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。2.3.1DNA的半保留复制(semi-conservativereplication)Semi-conservativeConservativeDispersive中国科学院上海生化与细胞所2002年招收硕士研究生分子遗传学入学考试:请设计一个实验来证明DNA复制是以半保留方式进行的(8分)。2、实验证据(1958Meselson和Stahl):MatthewMesselsonFranklinStahl“Heavy”DNA“Hybrid”DNA“light”DNA“Hybrid”DNA3、DNA半保留复制的生物学意义:DNA的半保留复制表明DNA在代谢上的稳定性,保证亲代
本文标题:02 染色体与DNA-1
链接地址:https://www.777doc.com/doc-3093136 .html