您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 两个变量间的相关关系
世界是一个普遍联系的整体,任何事物都与其它事物相联系小明,你数学成绩不太好,物理怎么样?也不太好啊.学不好数学,物理也是学不好的?????...你认为老师的说法对吗?事实上,我们在考察数学成绩对物理成绩影响的同时,还必须考虑到其他的因素:爱好,努力程度如果单纯从数学对物理的影响来考虑,就是考虑这两者之间的相关关系物理成绩数学成绩学习兴趣花费时间其他因素探究一阅读课本P84---P85内容及课堂练习,思考并讨论以下问题:1.当两个变量之间是一种确定性关系时,这两个变量之间的关系是函数关系;当两个变量之间带有随机性时,这两个变量之间的关系是什么关系?2.相关关系与函数关系有什么异同?3.请举出一两个现实生活中具有相关关系的例子或成语4.思考回答P85课堂练习1、2:探究一阅读课本P84---P85内容及课堂练习,思考并讨论以下问题:1.当两个变量之间是一种确定性关系时,这两个变量之间的关系是函数关系;当两个变量之间带有随机性时,这两个变量之间的关系是什么关系?变量间相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系.2.相关关系与函数关系有什么异同?相同点:两者均是指两个变量间的关系.不同点:函数关系是一种确定的关系;相关关系是一种非确定的关系.商品销售收入广告支出经费?粮食产量施肥量?学习成绩学习时间?3.请举出一两个现实生活中具有相关关系的例子或成语生活中相关成语:“名师出高徒”,“瑞雪兆丰年”“强将手下无弱兵”“虎父无犬子”“老子英雄儿好汉,老子反动儿混蛋”“上梁不正下梁歪”吸烟会损害身体的健康。但人体健康是由很多因素共同作用的结果,既有长寿的吸烟者,又有发现由于吸烟而引发的患病者,吸烟与健康是一种相关关系,所以吸烟不一定引起健康问题。1.有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?•但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的。4.思考回答P85课堂练习1、2:•没有根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅又使婴儿出生率高的第三个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠。2.某地区的环境条件适合天鹅栖息繁衍,有人统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低。于是,他就得出一个结论:天鹅能够带来孩子。你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?•可以通过试验来进行。相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同。P85-练习2:1.下列关系中,是带有随机性相关关系的是()①正方形的边长与面积的关系;②水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故发生之间的关系.2.下列两个变量之间的关系哪个不是函数关系()A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人体的脂肪含量与年龄即学即用以上种种问题中的两个变量之间的相关关系,我们都可以根据自己的生活,学习经验作出相应的判断,“经验当中有规律”,但是不管你多有经验,只凭经验办事,还是很容易出错的,在寻找变量间的相关关系时,我们需要一些更为科学的方法来说明问题.在寻找变量间的相关关系时,统计同样发挥了非常重要的作用,我们是通过收集大量的数据,对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.下面我们通过具体的例子来分析探究二阅读课本P85---P86思考,思考并讨论以下问题:1.根据表2-3提供的相信,你认为人体的脂肪含量与年龄之间有怎样的关系?2.通过作图可以对两个变量之间的关系有一个直观的印象.将表2-3提供的数据转变成什么样的形式更能直观的反映这种关系?3.两个变量的相关关系有正相关和负相关,它们在散点图上各有什么特点?4.你还能举出一些生活中的变量成正相关或负相关的例子吗?正、负相关、线性相关概念探究•请同学们观察这3幅图,看有什么特点?图1图1051015202530354005101520253035404550556065年龄脂肪含量0200400600800100005010015011000.20.40.60.811.2-0.200.20.40.60.811.22图图3•正相关:因变量随自变量的增大而增大,图中的点分布在左下角到右上角的区域•负相关:因变量随自变量的增大而减小,散点图中的点分布在左上角到右下角的区域.•无相关性:因变量与自变量不具备相关性小结:借助散点图可以直观判断两个变量间的相关关系强调:①如果所有的样本都落在某一条函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.②如果所有的样本都落在某一条函数曲线的附近,变量之间具有相关关系.③如果所有的样本都落在某一直线的附近,变量之间具有线性相关关系.探究三阅读课本P87--P89思考,思考并讨论以下问题:1.什么是样本点的中心?2.什么是回归直线?回归直线一定经过样本点的中心吗?3.你有哪些方案可以得到回归直线?4.你能体会用最小二乘法得到回归直线是如何体现“从总体上看,各点与此直线的距离最小”的含义的吗?假设样本点为(x1,y1),(x2,y2),…,(xn,yn),记x=1ni=1nxi,y=1ni=1nyi,则(x,y)为样本点的中心1.样本点的中心我们再观察它的图像发现这些点大致分布在一条直线附近,像这样,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线,该直线的方程叫回归方程。脂肪含量20253035404550556065年龄05101520253035402.回归直线的定义及特征(2)回归直线的特征:回归直线过样本点的中心。.),(__yx那么,我们该怎样来求出这个回归方程?请同学们展开讨论,能得出哪些具体的方案?1.测量法:移动直线l使所有点到它的距离之和最小2.两点确定法:选取两点作直线,使其两边点个数一样3.分组法:将点进行分组点,分别求其斜率和截距,求平均值(1)(2)(3)实际上,求回归直线的关键是如何用数学的方法来刻画“从整体上看,各点到此直线的距离小”。212221211221211121()()()[()]()[]()[()()]()()()()()niiiniiniiniiiniiniiniiiniiiniiQybxaxxyynaybxxxbxxxxyyyyxxxxyyQxxybxLLb=当时,取得最小值。a=计算回归方程的斜率与截距的一般公式:xbyaxnxyxnxxxyyxxbniiniiiniiniiiy,)())((1221121求线性回归方程例:观察两相关变量得如下表:x-1-2-3-4-553421y-9-7-5-3-115379求两变量间的回归方程解1:列表:i12345678910-1-2-3-4-553421-9-7-5-3-1153799141512551512149xiyixiyi计算得:0,0yx110,1101011012yxxiiiii1011022110110100ˆ111010010iiiiixybyxxxˆˆˆ000aybxb∴所求回归直线方程为y=x^第一步:列表;第二步:计算;第三步:代入公式计算,的值;第四步:写出直线方程。yxyxiiii,,yxxiniiniiyx112,,,ˆaˆb小结:求线性回归直线方程的步骤:探究四阅读课本P89—P91思考,思考并讨论以下问题:1.如何用计算机(计算器)求回归直线的方程?2.由回归直线方程得出的预测值与真实值一定相等吗?应该如何理解这种差异?3.不使用计算器,你能求得回归方程吗?应该计算哪些量?一般步骤是什么?总结基础知识框图表解变量间关系函数关系相关关系散点图线形回归线形回归方程1、相关关系(1)概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系。(2)相关关系与函数关系的异同点。相同点:两者均是指两个变量间的关系。不同点:函数关系是一种确定关系,是一种因果系;相关关系是一种非确定的关系,也不一定是因果关系(但可能是伴随关系)。(3)相关关系的分析方向。在收集大量数据的基础上,利用统计分析,发现规律,对它们的关系作出判断。2、两个变量的线性相关(1)回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析。通俗地讲,回归分析是寻找相关关系中非确定关系的某种确定性。(2)散点图A、定义;B、正相关、负相关。3、回归直线方程注:如果关于两个变量统计数据的散点图呈现发散状,则这两个变量之间不具有相关关系.3、回归直线方程(1)回归直线:观察散点图的特征,如果各点大致分布在一条直线的附近,就称两个变量之间具有线性相关的关系,这条直线叫做回归直线。(2)最小二乘法nn(x-x)(y-y)xy-nxyiiiii=1i=1ˆb==,nn222(x-x)x-nxiii=1i=1ˆa=y-bx.nn11x=x,y=y.iinni=1i=1其中ˆˆˆybxa(3)利用回归直线对总体进行估计图3-1050100150200-2002040热饮杯数1、散点图2、从图3-1看到,各点散布在从左上角到由下角的区域里,因此,气温与热饮销售杯数之间成负相关,即气温越高,卖出去的热饮杯数越少。3、从散点图可以看出,这些点大致分布在一条直线的附近,因此利用公式求出回归方程的系数。Y=-2.352x+147.7674、当x=2时,Y=143.063因此,某天的气温为2摄氏度时,这天大约可以卖出143杯热饮。练习1:5个学生的数学和物理成绩如下表:ABCDE数学8075706560物理7066686462画出散点图,并判断它们是否有相关关系。物理成绩50556065707580405060708090数学成绩解:由散点图可见,两者之间具有正相关关系。练习2、求线性回归方程观察两相关变量得如下表:x24568y34657求两变量间的回归方程解:列表:i1234524568346576163030564162536642ixyixiyi练习2、求线性回归方程138,14551512yxxiiiii201355145555138552512251iiiiixxyxyxb47520135xbya计算得:5,5yx所求线性回归方程为:472013xy小结:求线性回归直线方程的步骤:第一步:列表;第二步:计算;第三步:代入公式计算的值;第四步:写出直线方程。2,,,iiiiixyxyxyxxiniiniiyx112,,,ab,探究五(课外探究)1.研究P101-A8探究:回归方程中的回归系数b的意义是什么?2.阅读P92--《相关关系的强与弱》探究:如何判断两个变量线性相关关系的强与弱?品味高考11.(2009·海南、宁夏)对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关答案:C12.(2010·广东卷)某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是__
本文标题:两个变量间的相关关系
链接地址:https://www.777doc.com/doc-3097040 .html