您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2.3.4平面与平面垂直的性质教学设计
12.3.4平面与平面垂直的性质教学设计教学分析空间中平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的性质定理具备以下两个特点:(1)它是立体几何中最难、最“高级”的定理.(2)它往往又是一个复杂问题的开端,即先由面面垂直转化为线面垂直,否则无法解决问题.因此,面面垂直的性质定理是立体几何中最重要的定理.三维目标1.探究平面与平面垂直的性质定理,进一步培养学生的空间想象能力.2.面面垂直的性质定理的应用,培养学生的推理能力.3.通过平面与平面垂直的性质定理的学习,培养学生转化的思想.重点难点教学重点:平面与平面垂直的性质定理.教学难点:平面与平面性质定理的应用.课时安排1课时教学过程复习(1)面面垂直的定义.如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.(2)面面垂直的判定定理.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:ABABα⊥β.两个平面垂直的判定定理图形表述为:图1图2导入新课思路1.(情境导入)观察黑板所在的平面和地面,它们是互相垂直的,那么黑板所在的平面里的任意一条直线是否就一定和地面垂直?思路2.(事例导入)观察长方体ABCD-A`B`C`D`中,平面AA`D`D与平面ABCD垂直,你能否在平面AA`D`D中找一条直线垂直于平面ABCD?2推进新课新知探究提出问题①如图3,若α⊥β,α∩β=CD,ABα,AB⊥CD,AB∩CD=B.请同学们讨论直线AB与平面β的位置关系.图3②用三种语言描述平面与平面垂直的性质定理,并给出证明.③设平面α⊥平面β,点P∈α,P∈a,a⊥β,请同学们讨论直线a与平面α的关系.④分析平面与平面垂直的性质定理的特点,讨论应用定理的难点.活动:问题①引导学生作图或借助模型探究得出直线AB与平面β的关系.问题②引导学生进行语言转换.问题③引导学生作图或借助模型探究得出直线a与平面α的关系.问题④引导学生回忆立体几何的核心,以及平面与平面垂直的性质定理的特点.讨论结果:①通过学生作图或借助模型探究得出直线AB与平面β垂直,如图3.②两个平面垂直的性质定理用文字语言描述为:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一平面.两个平面垂直的性质定理用图形语言描述为:如图4.两个平面垂直的性质定理用符号语言描述为:BCDABCDABCDABAB⊥β.两个平面垂直的性质定理证明过程如下:如图5,已知α⊥β,α∩β=a,ABα,AB⊥a于B.求证:AB⊥β.图5证明:在平面β内作BE⊥CD垂足为B,则∠ABE就是二面角αCDβ的平面角.由α⊥β,可知AB⊥BE.又AB⊥CD,BE与CD是β内两条相交直线,∴AB⊥β.③问题③也是阐述面面垂直的性质,变为文字叙述为:求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.下面给出证明.如图6,已知α⊥β,P∈α,P∈a,a⊥β.求证:aα.图6证明:设α∩β=c,过点P在平面α内作直线b⊥c,∵α⊥β,∴b⊥β.而a⊥β,P∈a,∵经过一点只能有一条直线与平面β垂直,∴直线a应与直线b重合.那么aα.利用“同一法”证明问题,主要是在按一般途径不易完成问题的情形下所采用的一种数学方法,这里要求做到两点.一是作出符合题意的直线b,不易想到,二是证明直线b和直线a重合,相对容易些.点P的位置由投影所给的图及证明过程可知,可以在交线上,也可以不在交线上.3④我认为立体几何的核心是:直线与平面垂直,因为立体几何的几乎所有问题都是围绕它展开的,例如它不仅是线线垂直与面面垂直相互转化的桥梁,而且由它还可以转化为线线平行,即使作线面角和二面角的平面角也离不开它.两个平面垂直的性质定理的特点就是帮我们找平面的垂线,因此它是立体几何中最重要的定理.应用示例思路1例4如图7,已知α⊥β,a⊥β,aα,试判断直线a与平面α的位置关系.图7解:在α内作垂直于α与β交线的垂线b,∵α⊥β,∴b⊥β.∵a⊥β,∴a∥b.∵aα,∴a∥α.变式训练如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,平面PAC⊥平面ABC,(1)判断BC与平面PAC的位置关系,并证明。(2)判断平面PBC与平面PAC的位置关系。(1)证明:∵AB是⊙O的直径,C是圆周上不同于A,B的任意一点∴∠ACB=90°∴BC⊥AC又∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BC平面ABC∴BC⊥平面PAC(2)又∵BC平面PBC,∴平面PBC⊥平面PAC知能训练课本本节练习.课堂小结1、平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。2、证明线面垂直的两种方法:线线垂直→线面垂直;面面垂直→线面垂直3、线线、线面、面面之间的关系的转化是解决空间图形问题的重要思想方法。思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业课本习题2.3B组3、4BOPAC
本文标题:2.3.4平面与平面垂直的性质教学设计
链接地址:https://www.777doc.com/doc-3104011 .html