您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 三角函数、极限、等价无穷小公式
三角函数公式整合:两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式Sin2A=2SinA•CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ=-1/2*[cos(α+β)-cos(α-β)]cosαcosβ=1/2*[cos(α+β)+cos(α-β)]sinαcosβ=1/2*[sin(α+β)+sin(α-β)]cosαsinβ=1/2*[sin(α+β)-sin(α-β)]诱导公式sin(-α)=-sinαcos(-α)=cosαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式1.极限的概念(1)数列的极限:0,N(正整数),当Nn时,恒有AxnAxnnlim或Axn)(n几何意义:在),(AA之外,nx至多有有限个点Nxxx,,,21(2)函数的极限x的极限:0,0X,当Xx时,恒有Axf)(Axfx)(lim或Axf)()(x几何意义:在()XxX之外,)(xf的值总在),(AA之间。0xx的极限:0,0,当00xx时,恒有Axf)(Axfxx)(lim0或Axf)()(0xx几何意义:在0000(,)(,)xxxxx邻域内,)(xf的值总在),(AA之间。(3)左右极限左极限:0,0,当00xxx时,恒有Axf)(Axfxx)(lim0或Axfxf)0()(00右极限:0,0,当00xxx时,恒有Axf)(Axfxx)(lim0或Axfxf)0()(00极限存在的充要条件:00lim()lim()xxxxfxAfx(4)极限的性质唯一性:若Axfxx)(lim0,则A唯一保号性:若Axfxx)(lim0,则在0x的某邻域内0A(0)A()0fx(()0)fx;()0fx(()0)fx0A(0)A有界性:若Axfxx)(lim0,则在0x的某邻域内,)(xf有界2.无穷小与无穷大(1)定义:以0为极限的变量称无穷小量;以为极限的变量称无穷大量;同一极限过程中,无穷小(除0外)的倒数为无穷大;无穷大的倒数为无穷小。注意:0是无穷小量;无穷大量必是无界变量,但无界变量未必是无穷大量。例如当x时,xxsin是无界变量,但不是无穷大量。(2)性质:有限个无穷小的和、积仍为无穷小;无穷小与有界量的积仍为无穷小;Axfxx)(lim0成立的充要条件是Axf)((00(,)xxx,0lim)(3)无穷小的比较(设0lim,0lim):若lim0,则称是比高阶的无穷小,记为()o;特别称为()o的主部若lim,则称是比低阶的无穷小;若limC,则称与是同阶无穷小;若lim1,则称与是等价无穷小,记为~;若limkC,(0,0kC)则称为的k阶无穷小;(4)无穷大的比较:若limu,limv,且limuv,则称u是比v高阶的无穷大,记为1()ov;特别u称为1()uvovv的主部3.等价无穷小的替换若同一极限过程的无穷小量~,~,且lim存在,则()()limlim()()fxfxgxgx(lim0)常用等价无穷小sintanarcsinarctan~ln(1)111e2111cos~2111~21(1)1~1~lnnnaa注意:(1)无论极限过程,只要极限过程中方框内是相同的无穷小就可替换;(2)无穷小的替换一般只用在乘除情形,不用在加减情形;(3)等价无穷小的替换对复合函数的情形仍实用,即若lim()(0)ff,~,则()~()ff4.极限运算法则(设Axf)(lim,Bxg)(lim)(1))()(limxgxf)(limxfBAxg)(lim(2))()(limxgxf)(limxfBAxg)(lim特别地,)(lim)(limxfCxCf,nxf)(limnnAxf)(lim(3))()(limxgxfBAxgxf)(lim)(lim(0B)5.准则与公式(lim0,lim0)准则1:(夹逼定理)若)()()(xxfx,则Axx)(lim)(limAxf)(lim准则2:(单调有界数列必有极限)若nx单调,且nxM(0M),则limnnx存在(nx收敛)准则3:(主部原则)()limlim()oo;1111121212()()limlim()()oooo公式1:0sinlim1xxxsinlim1公式2:10lim(1)1lim(1)xxnnxen1lim(1)1lim(1)e公式3:limlim(1)e,一般地,limlim(1)ffe公式4:1101100limlimnnnnnnnmmmxxmmmmnmaxaxaaxanmbxbxbbxbnm6.几个常用极限(0,1)aa(1)1limnna,1limnnn;(2)1lim0xxx,limxxx;(3)10limxxe,10lim0xxe;(4)0limlnxx;(5)001limarctan21limarctan2xxxx;(6)011lim111nnqqqqq不存在
本文标题:三角函数、极限、等价无穷小公式
链接地址:https://www.777doc.com/doc-3123255 .html