您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 2018年高考文科数学分类汇编:专题八立体几何
《2018年高考文科数学分类汇编》立体几何一、选择题1.【2018全国一卷5】已知圆柱的上、下底面的中心分别为1O,2O,过直线12OO的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.122πB.12πC.82πD.10π2.【2018全国一卷9】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.172B.52C.3D.23.【2018全国一卷10】在长方体1111ABCDABCD中,2ABBC,1AC与平面11BBCC所成的角为30,则该长方体的体积为A.8B.62C.82D.834.【2018全国二卷9】在正方体中,为棱的中点,则异面直线与所成角的正切值为A.B.C.D.5.【2018全国三卷3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是1111ABCDABCDE1CCAECD223252726.【2018全国三卷12】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A.B.C.D.7.【2018北京卷6】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.4第7题图第8题图8.【2018浙江卷3】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A.2B.4C.6D.89.【2018浙江卷8】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ110.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA₁为底面矩形的一边,则这样的阳马的个数是()ABCD,,,ABC△93DABC123183243543侧视图俯视图正视图2211(A)4(B)8(C)12(D)16二、填空题1.【2018全国二卷16】已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.2.【2018天津卷11】如图,已知正方体ABCD–A1B1C1D1的棱长为1,则四棱锥A1–BB1D1D的体积为__________.3.【2018江苏卷10】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.三、解答题1.【2018全国一卷18】如图,在平行四边形ABCM中,3ABAC,90ACM∠,以AC为折痕将△ACM折起,使点M到达点D的位置,且ABDA⊥.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且23BPDQDA,求三棱锥QABP的体积.SSASBSA30SAB△82.【2018全国二卷19】如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.3.【2018全国三卷19】如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.4.【2018北京卷18】如图,在四棱锥P−ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;PABC22ABBC4PAPBPCACOACPOABCMBC2MCMBCPOMABCDCDMCDCDAMD⊥BMCAMPMC∥PBD(Ⅲ)求证:EF∥平面PCD.5.【2018天津卷17】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.6.【2018江苏卷15】在平行六面体1111ABCDABCD中,1111,AAABABBC.求证:(1)AB∥平面11ABC;(2)平面11ABBA平面1ABC.7.【2018江苏卷22(附加题)】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.8.【2018浙江卷19】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.9.【2018上海卷17】已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.参考答案一、选择题1.B2.B3.C4.C5.A6.B7.C8.C9.D10.D二、填空题1.82.313.43三、解答题1.解:(1)由已知可得,BAC=90°,BAAC⊥.又BA⊥AD,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=32.又23BPDQDA,所以22BP.作QE⊥AC,垂足为E,则QE13DC.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥QABP的体积为1111322sin451332QABPABPVQES△.2解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.2322AC12AC222OPOBPB12AC23BC423253sinOCMCACBOM455所以点C到平面POM的距离为.3.解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连结AC交BD于O.因为ABCD为矩形,所以O为AC中点.连结OP,因为P为AM中点,所以MC∥OP.MC平面PBD,OP平面PBD,所以MC∥平面PBD.4.解:(Ⅰ)∵PAPD,且E为AD的中点,∴PEAD.∵底面ABCD为矩形,∴BCAD∥,∴PEBC.(Ⅱ)∵底面ABCD为矩形,∴ABAD.∵平面PAD平面ABCD,∴AB平面PAD.∴ABPD.又PAPD,∴PD平面PAB,∴平面PAB平面PCD.(Ⅲ)如图,取PC中点G,连接,FGGD.∵,FG分别为PB和PC的中点,∴FGBC∥,且12FGBC.455CD∵四边形ABCD为矩形,且E为AD的中点,∴1,2EDBCDEBC∥,∴EDFG∥,且EDFG,∴四边形EFGD为平行四边形,∴EFGD∥.又EF平面PCD,GD平面PCD,∴EF∥平面PCD.5.解:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)解:取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM=22=13ADAM.因为AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN=22=13ADAN.在等腰三角形DMN中,MN=1,可得1132cos26MNDMNDM.所以,异面直线BC与MD所成角的余弦值为1326.(Ⅲ)解:连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=3.又因为平面ABC⊥平面ABD,而CM平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD=22ACAD=4.在Rt△CMD中,3sin4CMCDMCD.所以,直线CD与平面ABD所成角的正弦值为34.6.证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.7.解:如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以1,{},OBOCOO为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()ABCABC.(1)因为P为A1B1的中点,所以31(,,2)22P,从而131(,,2)(0,2,222),BPAC,故111|||14|310|cos,|20||||522BPACBPACBPAC.因此,异面直线BP与AC1所成角的余弦值为31020.(2)因为Q为BC的中点,所以31(,,0)22Q,因此33(,,0)22AQ,11(0,2,2),(0,0,2)ACCC.设n=(x,y,z)为平面AQC1的一个法向量,则10,0,AQACnn即330,22220.xyyz不妨取(3,1,1)n,设直线CC1与平面AQC1所成角为,则111||25sin|cos|,|||552CCCCCC|nnn,所以直线CC1与平面AQC1所成角的正弦值为55.8.解:方法一:(Ⅰ)由11112,4,2,,ABAABBAAABBBAB得11122ABAB,所以2221111ABABAA.故111ABAB.由2BC,112,1,BBCC11,BBBCCCBC得115BC,由2,120ABBCABC得23AC,由1CCAC,得113AC,所以2221111ABBCAC,故111ABBC.因此1AB平面111ABC.(Ⅱ)如图,过点1C作111CDAB,交直线11AB于点D,连结AD.由1AB平面111ABC得平面111ABC平面1ABB,由111CDAB得1CD平面1ABB,所以1CAD是1AC与平面1ABB所成的角.由1111115,22,21BCABAC得11111161cos,sin77CABCAB,所以13CD,故11139sin13CDCADAC
本文标题:2018年高考文科数学分类汇编:专题八立体几何
链接地址:https://www.777doc.com/doc-3124751 .html