您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 第二章+GPS坐标系统和时间系统
第二章GPS坐标系统和时间系统主要内容2.1天球及天球坐标系2.2协议地球坐标系2.3GPS坐标系统2.4时间系统北天极南天极黄道天球赤道赤经赤纬太阳星体地球地球赤道本初子午圈定义:以空间某一点为中心、半径为无穷大的一个圆球。作用:天文学中通常把参考坐标建立在天球上分类:站心天球、地心天球、日心天球2.1.1天球的基本概念2.1天球及天球坐标系一、天球的基本概念天球——以地心为球心,以任意长为半径的球面。天轴——地球旋转轴。天极——天轴与天球面的交点。Pn、Ps。天球赤道面——过球心且与天轴垂直的平面。黄道面——地球公转轨道所在平面,与赤道面夹角为23.5°。春分点——太阳从南半球向北半球运行时,黄道与赤道的交点。PPΠε赤道黄道春分点黄赤交角ssnnΠ二、天球坐标系的概念1)天球空间直角坐标系原点:地球质量中心Z轴:指向北天极PnX轴:指向春分点Y轴:与X、Z轴构成右手坐标系2)天球球面坐标系原点:地球质量中心赤经α:天体子午面与春分点子午面的夹角赤纬δ:天体与地心连线和天球赤道面的夹角向径r:天体到地心的距离XYZxyzαδ天球坐标系地心s春分点依天球中心的不同来划分•日心坐标系、地心坐标系、站心坐标系天球坐标系的分类依所依据的天球上的点线圈的不同来划分•时角赤道坐标系–以天球赤道、子午面和上赤道点为依据–用赤纬和时角t表示赤经赤道坐标系–以天球赤道、过春分点的时圈和春分点为依据–用赤经和赤纬表示黄道坐标系–以天球黄道、过春分点的黄经圈和春分点为依据–用黄经l和黄维表示3)空间直角坐标系与球面坐标系的转换sinsincoscoscosrzyx22222arctanarctanyxzxyzyxr岁差和章动瞬时平天极、瞬时天球平赤道和瞬时平春分点(仅考虑岁差)岁差章动对天球坐标的影响岁差、章动导致春分点位置发生变化瞬时真天极、瞬时天球真赤道和瞬时真春分点(考虑岁差和章动的综合影响)岁差章动对天球坐标的影响协议天球坐标系协议天球坐标系•经协商指定的某一特定时刻的平天球坐标系协议天球坐标系(CIS)(1)当前,国际上所采用的天球坐标系•国际大地测量协会和国际天文协议联合会确定从1984年1月1日起采用•为2000年1月15日12h(J2000.0)的平天球坐标系Z轴指向J2000.0的平北天极X轴指向J2000.0的平春分点协议天球坐标系与真天球坐标系间的关系•进行岁差和章动改正协议天球坐标系(CIS)(2)特定时刻的真天球坐标章动改正特定时刻的平天球坐标J2000.0的平天球坐标(协议天球坐标)岁差改正。为瞬时真天球坐;章动态系数为岁差改正矩阵;协议天球坐标;其中标阵为00XNPXNPXX1.地球直角坐标系的定义原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林尼治子午圈的交点,Y轴在赤道平面里与XOZ构成右手坐标系。2.2协议地球坐标系图2-2直角坐标系和大地坐标系2.地球大地坐标系的定义地球椭球的中心与地球质心重合椭球的短轴与地球自转轴重合。空间点位置在该坐标系中表述为(L,B,H)。地球直角坐标系和地球大地坐标系可用图2-2表示:对同一空间点,直角坐标系与大地坐标系参数间有如下转换关系:3.直角坐标系与大地坐标系参数间的转换2()coscos()cossin(1)sinXNHBLYNHBLZNeHB(2-3)2222arctan(/)arctan()/[((1))]/sin(1)LYXBZNHXYNeHHZBNe(2-4)222222/1sin()/,NaeBNeabaae式中,,为该点的卯酉圈半径;,分别为该大地坐标系对应椭球的长半径和第一扁心率。地心坐标系•坐标原点位于地球质心地心坐标系与参心坐标系参心坐标系•坐标原点不位于地球质心地心坐标系和参心坐标系的特点•地心坐标系适合于全球用途的应用•参心坐标系适合于局部用途的应用有利于使局部大地水准面与参考椭球面符合更好保持国家坐标系的稳定有利于地心坐标的保密定义:由于地球内部和外部的种种动力学因素,使得地球体对于自转轴产生相对运动,因而引起了地极的移动,这种现象称为极移。极移极移包括Chandlar分量(周期1.2年)和周年分量极移的测定•测定极移–通过测定纬度的变化ILS(后来的IPMS)和BIH•国际协用原点CIO(1900-1905平均地极)•极原点(JYD)(中国)岁差、章动和极移•岁差、章动造成天球坐标的变化•极移造成地球坐标的变化平地球坐标系和瞬时(真)地球坐标系瞬时(真)地球坐标系Z轴与瞬时地球自转轴重合或平行的地球坐标系zyxXRYRZYXPyPx)()(平地球坐标系Z轴指向空间中某一固定点(平极)的地球坐标系平地球坐标(X,Y,Z)和瞬时(真)地球坐标(x,y,z)的转换关系瞬时(真)地球坐标系与瞬时天球坐标系的关系。天坐标标为瞬时地球坐标系下的其中球坐标坐标系下的为瞬时),,(),,(1000cossin0sincos)(ccccccGGGGcccGzzyxzyxzyxSSSSzyxSRzyxzcxcycxy(z)OSGSG早期的经度零点•1884,美,华盛顿国际经度会议定义:通过英国Greenwich天文台Airy仪中心的子午线为全球统一的起始子午线。起始子午线与赤道的交点称为天文经度零点。•受板块运动、局部地壳运动和极移的影响经度零点的问题格林尼治平均子午线•由多个天文台共同维持•可减少板块运动、局部地壳运动和观测误差的影响CIO-BIH经度零点通过CIO和天文经度零点的子午线称为起始子午线,其与CIO赤道的交点称为赤道参考点或CIO-BIH经度零点几种常用坐标系之间的关系观测瞬间的真天球□坐标系岁差、章动改正旋转SG角观测瞬间的真地球坐标系平地球坐标系极移改正URRRRRRPNTRRRSTUrPNSrUTr)]()()()][()()([)()()(3231313123333AAAppCRFCRFTRFzGASTyx转等;转,包括极移、地球自为非外部力矩造成的旋;转,包括岁差、章动等为由外部力矩造成的旋某一历元的平天球坐标系WGS-84坐标系2.3GPS坐标系国际地球参考框架(ITRF)北京54旧坐标系北京54新坐标系地图投影与高斯-克吕格平面直角坐标系1)WGS-84坐标系WGS-84坐标系是美国84年在卫星大地测量的基础上建立的以地球质心为原点的大地测量基准。大小形状参数见后,Z轴指向1984北极,X轴指向1984格林威治子午线与赤道交点,Y轴与X、Z轴构成右手坐标系。由GPS卫星发布的星历参数是WGS-84坐标系的数据,故GPS测量时,先求得测站点的WGS-84坐标,再换算为当地使用的坐标。2)ITRF参考框架ITRF是国际地球自转服务局根据分布全球的地面观测站,以最先进的测量技术获得的数据确定的大地测量基准。是世界公认的精度最高的大地测量基准。目前尚未普遍采用。但其日后必将代替WGS-84。IERF已发布了ITRF88、89、90、91、92、93、94、96、97、2000等多个地心参考框架,椭球参数与WGS-84相同,定向不同。网站:长半径:a=6378137±2(m);地球引力常数:GM=3986005×108m3s-2±0.6×108m3s-2;正常化二阶带谐系数:C20=-484.16685×10-6±1.3×10-9;J2=108263×10-8地球自转角速度:ω=7292115×10-11rads-1±0.150×10-11rads-1WGS84与ITRF的关系WGS84地面站坐标精度为1m到2m的精度,ITRF则为厘米级精度引力常数不同WGS-84与ITRF的关系–WGS84与ITRF的转换关系(1)椭球参数有较大误差。1954年北京坐标系1.1954年北京坐标系(BJ54旧)坐标原点:前苏联的普尔科沃。参考椭球:克拉索夫斯基椭球。平差方法:分区分期局部平差。存在的问题:(2)参考椭球面与我国大地水准面存在着自西向东明显的系统性倾斜。(4)定向不明确。(3)几何大地测量和物理大地测量应用的参考面不统一。坐标原点:陕西省泾阳县永乐镇。参考椭球:1975年国际椭球。1980年国家大地坐标系(GDZ80)平差方法:天文大地网整体平差。特点:(1)采用1975年国际椭球。(2)参心大地坐标系是在1954年北京坐标系基础上建立起来的。(3)椭球面同似大地水准面在我国境内最为密合,是多点定位。(4)定向明确。(5)大地原点地处我国中部。(6)大地高程基准采用1956年黄海高程。新1954年北京坐标系(BJ54新)是由1980国家大地坐标(GDZ80)转换得来的。坐标原点:陕西省泾阳县永乐镇。新1954年北京坐标系(BJ54新)参考椭球:克拉索夫斯基椭球。平差方法:天文大地网整体平差。BJ54新的特点:(1)采用克拉索夫斯基椭球。(2)是综合GDZ80和BJ54旧建立起来的参心坐标系。(3)采用多点定位。但椭球面与大地水准面在我国境内不是最佳拟合。(4)定向明确。(5)大地原点与GDZ80相同,但大地起算数据不同。(6)大地高程基准采用1956年黄海高程。(7)与BJ54旧相比,所采用的椭球参数相同,其定位相近,但定向不同。(8)BJ54旧与BJ54新无全国统一的转换参数,只能进行局部转换。各基准的参数比较坐标系统地球椭球1954年北京坐标系1980年西安坐标系WGS-84世界大地坐标系椭球名称克拉索夫斯基1980大地坐标系WGS-84建成年代194019791984椭球类型参考椭球参考椭球总地球椭球a(m)637824563781406378137J2或C20(f)-(1:298.3)J2:1.08263×10-3(1:298.257)C20:-484.16685×10-6(1:298.257223563)GM-3.986005×10143.986005×1014(rad/s)-7.292115×10-57.292115×10-5现实世界和坐标空间的联系任何空间特征都表示为地球表面的一个特定位置,而位置依赖于既定的坐标系来表示。地图投影与高斯-克吕格平面直角坐标系一、地图投影1)地图投影:就是将椭球面各元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。研究这个问题的专门学科叫地图投影学。可用下面两个方程式(坐标投影公式)表示:),(),(21BLFyBLFx式中L,B是椭球面上某点的大地坐标,而是x,y该点投影后的平面直角坐标。等角投影——投影前后的角度相等,但长度和面积有变形;等距投影——投影前后的长度相等,但角度和面积有变形;等积投影——投影前后的面积相等,但角度和长度有变形。地图投影的方式投影变形:椭球面是一个凸起的、不可展平的曲面。将这个曲面上的元素(距离、角度、图形)投影到平面上,就会和原来的距离、角度、图形呈现差异,这一差异称为投影变形。投影变形的形式:角度变形、长度变形和面积变形。2)投影与变形3)控制测量对地图投影的要求应当采用等角投影(又称为正形投影)采用正形投影时,在三角测量中大量的角度观测元素在投影前后保持不变;在测制的地图时,采用等角投影可以保证在有限的范围内使得地图上图形同椭球上原形保持相似。在采用的正形投影中,要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数。能按分带投影二、高斯-克吕格平面直角坐标系(1)基本概念:如下图所示,假想有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用
本文标题:第二章+GPS坐标系统和时间系统
链接地址:https://www.777doc.com/doc-3130048 .html