您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北师大版-八上数学-专题一-勾股定理(内含答案详解)
第1页(共22页)BS八上数学专题一勾股定理一.选择题(共14小题)1.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.182.在△ACB中,若AB=AC=5,BC=6,则△ABC的面积为()A.6B.8C.12D.243.直角三角形的两边长分别为6和8,那么它的第三边长度为()A.8B.10C.8或2D.10或24.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.645.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.B.2C.D.26.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()第2页(共22页)A.6B.6πC.10πD.127.△ABC的三边长为a,b,c,已知a:b=1:2,且斜边c=2,则△ABC的周长为()A.3B.5C.6D.68.如图,线段AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4B.4.5C.4.8D.59.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S3.若S2=48,S3=9,则S1的值为()A.18B.12C.9D.310.下列各组数据分别为三角形的三边长,不能组成直角三角形的是()A.9,12,15B.7,24,25C.6,8,10D.3,5,711.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()第3页(共22页)A.15dmB.17dmC.20dmD.25dm12.在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.13mB.12mC.4mD.10m13.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为()A.14cmB.15cmC.24cmD.25cm14.一架长25dm的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7dm,如果梯子的顶端沿墙下滑4dm,那么梯足将滑()A.9dmB.15dmC.5dmD.8dm二.填空题(共6小题)15.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.16.如果一个三角形的三边长之比为9:12:15,且周长为72cm,则它的面积为cm2.17.如图,AC⊥BC,AC=6,BC=8,AB=10,则点C到线段AB的距离是.第4页(共22页)18.已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形19.小东拿着一根长竹竿进一个宽为4米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高0.5米,当他把竿斜着时,两端刚好顶着城门的对角,则竿长.20.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是cm.三.解答题(共4小题)21.有一块空白地,如图,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,试求这块空白地的面积.22.一块空地如图如示,AB=9m,AD=12m,BC=17m,CD=8m,且∠A=90°,求这块空地的面积.23.在甲村至乙村间有一条公路,在C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示,为了安全起见,爆破点C周围半径250米范围内不得进入,问:在进行爆破时,公路AB段是否有危险?是否需要暂时封锁?请用你学过的知识加以解答.第5页(共22页)24.如图所示,永定路一侧有A、B两个送奶站,C为永定路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AC⊥BC,∠1=30°.(1)连接AB,求两个送奶站之间的距离;(2)有一人从点C处出发沿永定路边向右行走,速度为2.5km/h,多长时间后这个人距B送奶站最近?并求出最近距离.第6页(共22页)BS八上数学专题一勾股定理参考答案与试题解析一.选择题(共14小题)1.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.18【分析】利用勾股定理将AC2+BC2转化为AB2,再求值.【解答】解:∵Rt△ABC中,AB为斜边,∴AC2+BC2=AB2,∴AB2+AC2=AB2=32=9.故选:B.【点评】本题考查了勾股定理;熟练掌握勾股定理,由勾股定理得出AC2+BC2=AB2是解决问题的关键.2.在△ACB中,若AB=AC=5,BC=6,则△ABC的面积为()A.6B.8C.12D.24【分析】首先画出图形,利用勾股定理求出三角形ABC以BC为底边的高,再利用三角形的面积公式求出答案.【解答】解:如图,过点A作AD⊥BC,垂足为点D,∵AB=AC=5,BC=6,∴BD=CD=BC=×6=3,在△ABD中,∵AD2+BD2=AB2,∴AD===4,∴S△ABC=BC•AD=×4×6=12,故选:C.第7页(共22页)【点评】本题主要考查了勾股定理以及等腰三角形的性质,解题的关键是利用勾股定理求出三角形的高,此题难度一般.3.直角三角形的两边长分别为6和8,那么它的第三边长度为()A.8B.10C.8或2D.10或2【分析】分8为直角边、8为斜边两种情况,根据勾股定理计算.【解答】解:当8为直角边时,斜边==10,当8为斜边时,另一条直角边==2,故选:D.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.4.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:第8页(共22页)PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点评】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.5.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.B.2C.D.2【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.【解答】解:在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则BD=,故AB=AD+BD=+1.故选:C.【点评】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.6.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()第9页(共22页)A.6B.6πC.10πD.12【分析】根据勾股定理求出AB,分别求出三个半圆的面积和△ABC的面积,即可得出答案.【解答】解:在Rt△ACB中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB===5,所以阴影部分的面积S=×π×()2+×()2+﹣×π×()2=6,故选:A.【点评】本题考查了勾股定理和三角形的面积、圆的面积,能把不规则图形的面积转化成规则图形的面积是解此题的关键.7.△ABC的三边长为a,b,c,已知a:b=1:2,且斜边c=2,则△ABC的周长为()A.3B.5C.6D.6【分析】根据勾股定理得出c=x,进而得出三角形的三边,进而解答即可.【解答】解:设a=x,b=2x,由勾股定理可得:c=,∵斜边c=2,∴x=2,∴a=2,b=4,所以△ABC的周长为6+2,故选:C.【点评】此题考查勾股定理问题,关键是根据勾股定理得出c=x.8.如图,线段AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()第10页(共22页)A.4B.4.5C.4.8D.5【分析】根据勾股定理求出BC,根据三角形的面积公式计算即可.【解答】解:在Rt△ABC中,BC==10,三角形ABC的面积=×AB×AC=×BC×AD,则×6×8=×10×AD,解得,AD=4.8,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.9.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S3.若S2=48,S3=9,则S1的值为()A.18B.12C.9D.3【分析】过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.【解答】解:∵S2=48,∴BC=4,过A作AH∥CD交BC于H,第11页(共22页)则∠AHB=∠DCB,∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD=2,AH=CD=3,∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=3,∴S1=3,故选:D.【点评】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.10.下列各组数据分别为三角形的三边长,不能组成直角三角形的是()A.9,12,15B.7,24,25C.6,8,10D.3,5,7【分析】由已知得其符合勾股定理的逆定理才能构成直角三角形,对选项一一分析,选出正确答案.【解答】解:A、92+122=152,能构成直角三角形,故正确;B、72+242=252,能构成直角三角形,故正确;C、62+82=102,能构成直角三角形,故正确;D、32+52≠72,不能构成直角三角形,故错误.故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.第12页(共22页)11.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15dmB.17dmC.20dmD.25dm【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为8dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=82+[(2+3)×3]2=172,解得x=17.故选:B.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.12.在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.
本文标题:北师大版-八上数学-专题一-勾股定理(内含答案详解)
链接地址:https://www.777doc.com/doc-3146105 .html