您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 山西省运城市2016-2017学年高一数学下学期期末试卷(含解析)
2016-2017学年山西省运城市高一(下)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.函数f(x)=的最小正周期为()A.B.πC.2πD.4π2.已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.3.不等式<0的解集为()A.{x|﹣2<x<3}B.{x|x<﹣2}C.{x|x<﹣2或x>3}D.{x|x>3}4.若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2abB.C.D.5.已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.6.△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.37.设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值范围是()A.B.C.D.8.关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.9.设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.310.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈zB.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈zD.(,2k+),k∈z11.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°,动点E和F分别在线段BC和DC上,且,则的最小值为()A.B.C.D.12.已知数列{an}的首项为2,且数列{an}满足,设数列{an}的前n项和为Sn,则S2017=()A.﹣586B.﹣588C.﹣590D.﹣504二、填空题:本大题共4小题,每小题5分,共20分.13.设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为.14.化简:sin40°(tan10°﹣)=.15.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值为.16.锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA,则cosA+sinC的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知函数f(x)=cosx•cos(x﹣).(1)求f()的值.(2)求使f(x)<成立的x的取值集合.18.已知=(cosα,sinα),=(cosβ,sinβ),(0<β<α<π).(1)若,求证:;(2)设,若,求α,β的值.19.如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.20.已知等差数列{an}满足a3=7,a5+a7=26.{an}的前n项和为Sn.(1)求an及Sn;(2)令bn=﹣(n∈N*),求数列{bn}的前n项和Tn.21.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0.(1)求角A;(2)若a=2,△ABC的面积为,求b,c.22.已知数列{an}的首项a1=,an+1=,n=1,2,3,….(Ⅰ)证明:数列{﹣1}是等比数列;(Ⅱ)求数列{}的前n项和Sn.2016-2017学年山西省运城市高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.函数f(x)=的最小正周期为()A.B.πC.2πD.4π【考点】H1:三角函数的周期性及其求法.【分析】直接利用正弦函数的周期公式T=,求出它的最小正周期即可.【解答】解:函数f(x)=由T==||=4π,故D正确.故选D.2.已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.【考点】96:平行向量与共线向量;95:单位向量.【分析】由条件求得=(3,﹣4),||=5,再根据与向量同方向的单位向量为求得结果.【解答】解:∵已知点A(1,3),B(4,﹣1),∴=(4,﹣1)﹣(1,3)=(3,﹣4),||==5,则与向量同方向的单位向量为=,故选A.3.不等式<0的解集为()A.{x|﹣2<x<3}B.{x|x<﹣2}C.{x|x<﹣2或x>3}D.{x|x>3}【考点】74:一元二次不等式的解法.【分析】本题的方法是:要使不等式小于0即要分子与分母异号,得到一个一元二次不等式,讨论x的值即可得到解集.【解答】解:∵,得到(x﹣3)(x+2)<0即x﹣3>0且x+2<0解得:x>3且x<﹣2所以无解;或x﹣3<0且x+2>0,解得﹣2<x<3,所以不等式的解集为﹣2<x<3故选A4.若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2abB.C.D.【考点】7F:基本不等式.【分析】利用基本不等式需注意:各数必须是正数.不等式a2+b2≥2ab的使用条件是a,b∈R.【解答】解:对于A;a2+b2≥2ab所以A错对于B,C,虽然ab>0,只能说明a,b同号,若a,b都小于0时,所以B,C错∵ab>0∴故选:D5.已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【考点】87:等比数列.【分析】由数列{an}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.6.△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.7.设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值范围是()A.B.C.D.【考点】7C:简单线性规划.【分析】先根据约束条件画出可行域.要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,从而建立关于m的不等式组,解之可得答案.【解答】解:先根据约束条件画出可行域,要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,故得不等式组,解之得:m<﹣.故选C.8.关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.【考点】74:一元二次不等式的解法.【分析】利用不等式的解集以及韦达定理得到两根关系式,然后与已知条件化简求解a的值即可.【解答】解:因为关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),所以x1+x2=2a…①,x1•x2=﹣8a2…②,又x2﹣x1=15…③,①2﹣4×②可得(x2﹣x1)2=36a2,代入③可得,152=36a2,解得a==,因为a>0,所以a=.故选:A.9.设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.3【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.【解答】解:将y=sin(ωx+)+2的图象向右平移个单位后为=,所以有=2kπ,即,又因为ω>0,所以k≥1,故≥,故选C10.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈zB.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈zD.(,2k+),k∈z【考点】HA:余弦函数的单调性.【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos(πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.11.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°,动点E和F分别在线段BC和DC上,且,则的最小值为()A.B.C.D.【考点】9R:平面向量数量积的运算.【分析】利用等腰梯形的性质结合向量的数量积公式将所求表示为关于λ的代数式,再根据基本不等式求最小值即可.【解答】解:如图所示,等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°,所以AD=BC=CD=1,所以•=(+)•(+)=(+λ)•(+)=•+•+λ•+•=2×1×cos60°+×2×1+λ×1×1×cos60°+×1×1×cos120°=1++﹣≥+2=,当且仅当=,即λ=时等号成立.故选:B.12.已知数列{an}的首项为2,且数列{an}满足,设数列{an}的前n项和为Sn,则S2017=()A.﹣586B.﹣588C.﹣590D.﹣504【考点】8E:数列的求和.【分析】a1=2,⇒,,,…可得数列{an}是周期为4的周期数列,即可求解.【解答】解:∵a1=2,,∴,,,…可得数列{an}是周期为4的周期数列.S2017=,故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为﹣7.【考点】7C:简单线性规划.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=y﹣2x对应的直线进行平移,可得当x=5且y=3时z取得最小值,可得答案.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(3,3),B(5,3),C(2,0,)设z=F(x,y)=y﹣2x,将直线l:z=y﹣2x进行平移,观察y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值∴z最小值=F(5,3)=﹣7故答案为:﹣714.化简:sin40°(tan10°﹣)=﹣1.【考点】GF:三角函数的恒等变换及化简求值.【分析】利用三角函数的切化弦及辅助角公式、诱导公等对函数式化简即可求解【解答】解:=sin40°()=sin40°•====×2=﹣=﹣1故答案为:﹣115.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值为.【考点】7F:基本不等式.【分析】首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用法,利用a+b≥2代入已知条件,转化为解不等式求最值.【解答】解:考察基本不等式x+2y=8﹣x•(2y)≥8﹣()2(当且仅当x=2y时取等号)整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4(当且仅当x=2y时即x=2,y=1时取等号)则x+2y的最小值是4.故答案为:4.16.锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA,则cosA+sinC的取值范围是(,).【考点】HR:余弦定理.【分析】已知等式利用正弦定理化简,根据sinA不为0求出sinB的值,确定出B的度数,进而表示出A+C的度数,用A表示出C,代入所求式子利用两角和与差的
本文标题:山西省运城市2016-2017学年高一数学下学期期末试卷(含解析)
链接地址:https://www.777doc.com/doc-3146145 .html