您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2017年山东济宁市中考数学考试(含答案)
2017年山东济宁市中考数学考试(含答案)————————————————————————————————作者:————————————————————————————————日期:个人收集整理,勿做商业用途2017年山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)16的倒数是()A.6B.﹣6C.16D.﹣162.(3分)单项式9xmy3与单项式4x2yn是同类项,则m+n的值是()A.2B.3C.4D.53.(3分)下列图形中是中心对称图形的是()A.B.C.D.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣45.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.6.(3分)若√2𝑥−1+√1−2𝑥+1在实数范围内有意义,则x满足的条件是()个人收集整理,勿做商业用途A.x≥12B.x≤12C.x=12D.x≠127.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣aB.2a5﹣1𝑎C.a5D.a68.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.18B.16C.14D.129.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为𝐵𝐷̂,则图中阴影部分的面积是()A.𝜋6B.𝜋3C.𝜋2﹣12D.1210.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()个人收集整理,勿做商业用途A.①B.③C.②或④D.①或③二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2=.12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:.13.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.14.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.个人收集整理,勿做商业用途(第14题)(第15题)15.(3分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.三、解答题(本大题共7小题,共55分)16.(5分)解方程:2𝑥𝑥−2=1﹣12−𝑥.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;个人收集整理,勿做商业用途(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).个人收集整理,勿做商业用途设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是𝐵𝐶̂的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.个人收集整理,勿做商业用途20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.个人收集整理,勿做商业用途21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,个人收集整理,勿做商业用途半径为√5的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.个人收集整理,勿做商业用途22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=3√3𝑥(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(√3,3),点N的坐标是(√3,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,√3),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.个人收集整理,勿做商业用途2017年山东省济宁市中考数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.A.2.D.3.C.4.B.5.B.6.C7.D.8.B.9.A.10.D.二、填空题(本大题共5小题,每小题3分,共15分)11.m(a+b)212.y=1𝑥(答案不唯一).13.{𝑥+12𝑦=4823𝑥+𝑦=48.14.a+b=0.15.√318.三、解答题(本大题共7小题,共55分)16.解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.17.解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:3240×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.个人收集整理,勿做商业用途18.解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.19.【解答】(1)证明:连接OD,∵D为𝐵𝐶̂的中点,∴𝐵𝐷̂=𝐶𝐷̂,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=12AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=12AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.20.解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,个人收集整理,勿做商业用途∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=12∠ABN=30°.(2)结论:MN=12BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=12∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=12BM,∴MN=12BM.21.解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<2512且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣𝑏2𝑎=﹣14.∵n≤x≤﹣1<﹣14,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+14)2﹣18,∴M(﹣14,﹣18).个人收集整理,勿做商业用途如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣14k=﹣18,解得:k=12.∴OM的解析式为y=12x.设点P的坐标为(x,12x).由两点间的距离公式可知:OP=√𝑥2+(12𝑥)2=√5,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.22.解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,23.∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=𝑀𝑁𝑂𝑁=√3,∴∠AON=60°,∵当点M的坐标是(√3,3),点N的坐标是(√3,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=√32,∴OD=OPcos60°=√32×12=√34,PD=OP•sin60°=√32×√32=34,∴P(√34,34);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,√3),点N的坐标是(2,0),个人收集整理,勿做商业用途∴OM=√32+(√3)2=2√3,直线OM的解析式为y=√33x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=12ON=1,∵P的横坐标为1,∴y=√33×1=√33,∴P(1,√33);②如图4所示:由勾股定理得:MN=√(√3)2+12=2,∵P是△MON的相似点,∴△PNM∽△NOM,∴𝑃𝑁𝑂𝑁=𝑀𝑁𝑀𝑂,即𝑃𝑁2=22√3,解得:PN=2√33,即P的纵坐标为2√33,代入y=√33得:2√33=√33x,解得:x=2,∴P(2,2√33);综上所述:△MON的自相似点的坐标为(1,√33)或(2,2√33);(3)存在点M和点N,使△MON无自相似点,M(√3,3),N(2√3,0);理由如下:∵M(√3,3),N(2√3,0),∴OM=2√3=ON,∠
本文标题:2017年山东济宁市中考数学考试(含答案)
链接地址:https://www.777doc.com/doc-3147495 .html