您好,欢迎访问三七文档
ONTHEAFFINEANALOGUEOFJACK’SANDMACDONALD’SPOLYNOMIALSPavelI.Etingof,AlexanderA.Kirillov,Jr.DepartmentofMathematicsYaleUniversityNewHaven,CT06520,USAe-mail:etingof@math.yale.edu,kirillov@math.yale.eduIntroduction.Jack’sandMacdonald’spolynomialsareanimportantclassofsymmetricfunc-tionsassociatedtorootsystems.Inthispaperwede neandstudyananalogueofJack’sandMacdonald’spolynomialsfora nerootsystems.Ourapproachisbasedonrepresentationtheoryofa neLiealgebrasandquantuma nealgebras,andfollowstheideasofourrecentpapers[EK1,EK2,EK3].WestartwithareviewofthetheoryofJack(Jacobi)polynomialsassociatedwiththerootsystemofasimpleLiealgebrag.ThistheorywasdescribedinthepapersofHeckmanandOpdam[HO,H1,O1,O2].Inthesepapers,Jack’spolynomialsarede nedasabasisinthespaceofWeylgroupinvarianttrigonometricpolynomialswhich1)di ersfromthebasisoforbitsumsbyatriangularmatrix(withrespecttothestandardpartialorderingondominantintegralweights)withonesonthediagonal,and2)isaneigenbasisforacertainsecondorderdi erentialoperator(theSutherland-Olshanetsky-Perelomovoperator,[Su,OP]).ItturnsoutthattheseconditionsdetermineJack’spolynomialsuniquely.OrbitsumsandcharactersforgturnouttobespecialcasesofJack’spolynomials.Thesepolynomialshaveaq-deformation,whichiscalledMacdonald’spolynomials;theyhavebeenintroducedbyI.Macdonaldinhispapers[M1,M2]andhavebeenintensivelystudiedsincethattime.Wegeneralizethede nitionofJack’spolynomialstothecaseofa nerootsystems.Weassignsuchapolynomialtoeverydominantintegralweightofthea nerootsystem.Itisdoneinthesamewayasfortheusualrootsystems:theonlythingonehastodoisreplacetheSutherlandoperatorbyitsa neanalogue.Thisanalogueisconstructedinthesamewayasforusualrootsystems,anditturnsouttobe(afterspecializationoflevel)aparabolicdi erentialoperatorwhosecoe cientsareellipticfunctions.Thisoperatorwasintroducedin[EK3](fortherootsystemAn 1)andiscloselyrelatedtotheSutherlandoperatorwithellipticcoe cientsconsideredin[OP],butismoregeneral.Analogouslytothe nite-dimensionalcase,orbitsumsandcharacters(ofintegrablemodules)forthea neLiealgebra^garespecialcasesofa neJack’spolynomials.TypesetbyAMS-TEX1Fororbitsumsandcharactersofa neLiealgebras,thereisabeautifultheoryofmodularinvariancedescribedin[K].Wegeneralizethistheorytogenerala neJack’spolynomials.Itturnsoutthatthe nite-dimensionalspacespannedbytheJack’spolynomialsofagivenlevelismodularinvariantwithacertainweight.Moreover,asinthecharactercase,therepresentationofthemodulargroupinthisspaceis(conjecturedly)unitary,withrespecttoaquitenontrivialinnerproductwhichgeneralizestheMacdonaldinnerproduct.ThisinnerproductcoincideswiththeinnerproductonconformalblocksoftheWess-Zumino-Wittenconformal eldtheory,anditsexistencestillremainsaconjecture.However,weshowthatunlikethecharactercase,theimageofthecorrespondingprojectiverepresentationofthemodulargroupmaybein nite.FortherootsystemAn 1,itispossibletogiveaninterpretationofJack’sandMacdonald’spolynomialsintermsofrepresentationtheoryoftheLiealgebraslnandquantumgroupUq(sln),respectively[EK1,EK2].Morespeci cally,Macdon-ald’spolynomialsareinterpretedascertain(renormalized)vector-valuedcharacters(tracesofintertwiners)forquantumgroups{anotiongeneralizingtheusualchar-acters.Analogously,inthispaperweshowthatfortherootsystem^An 1thea neJack’spolynomialsde nedaseigenfunctionsofacertainsecondorderdi erentialoperatorcanberepresentedasrenormalizedtracesofintertwinersbetweencertainrepresentationsofthea neLiealgebra^g.Thisproofisanalogoustotheonegivenin[EK2]forthe nite-dimensionalcase.Finally,wede nethea neMacdonald’spolynomials(i.e.q-deformedJack’spolynomials)fortherootsystem^An 1toberenormalizedtracesofintertwinersforquantuma nealgebras,andformulate(asaconjecture)thea neanalogueoftheMacdonaldspecialvalueidentitiesfrom[M2].Thepaperisorganizedasfollows.InSection1,wegivebasicde nitionscon-cerningrootsystems.InSection2,wede netheSutherlandoperatoranditseigenfunctions(Jack’spolynomials)andquotesomeknownresultsaboutthem.InSection3,weconstructJack’spolynomialsfortherootsystemAn 1viarepresen-tationtheoryofsln.InSection4,wemakebasicde nitionsconcerninga nerootsystems.InSection5,wede nethea neanalogueofthegroupalgebraoftheweightlattice.InSection6,wede neandstudythea neCalogero-Sutherlandoperatorandintroducethea neJack’spolynomials.InSection7,weconstructthea neJack’spolynomialsviatracesofintertwinersforcsln.InSection8,wegiveacomplex-analyticdescriptionofthea neJack’spolynomials.InSection9,westudymodularpropertiesofthea neJack’spolynomials.InSection10,wegiveabriefintroductiontotheWess-Zumino-Wittenmodelandformulateaconjectureontheunitarityoftheactionofthemodulargroupona neJack’spolynomials.InSection11,wede nethea neMacdonald’spolynomials,andconjecturethatana neanalogueoftheMacdonaldspecialvalueformulaistrue.Also,inthissectionwediscusstheextensionoftheresultsoftheprevioussectionstonon-integervaluesofthecentralchargeofthe(quantum)a nealgebra.Finally,Section12isdevotedtothediscussionofsomeinterestingproblemswhichstillremainopen.Acknowledgements.WewouldliketothankouradvisorI.Frenkelforusefulsuggestion
本文标题:On-the-affine-analogue-of-Jacks-and-Macdonalds-pol
链接地址:https://www.777doc.com/doc-3154068 .html