您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > chapt1 传感器概述
汽车用传感器第一章传感器概述§1.0传感器与检测技术的作用历史时代:手工化机械化自动化信息化生产方式:人与简单工具动力机与机械自动测量控制智能机械装置……信息流获取传输处理控制…§1.1传感器的定义国家标准(GB7665-87)中传感器(Transducer/Sensor)的定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。①传感器是测量装置,能完成检测任务;②输入量是某一被测量,可能是物理量,也可能是化学量、生物量等;③输出量是某种物理量,便于传输、转换、处理、显示等,可以是气、光、电物理量,主要是电物理量;④输出输入有对应关系,且应有一定的精确程度。传感器功用:一感二传,即感受被测信息,并传送出去。(是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。)1.1人的感觉与机械的感觉§1.2传感器的组成辅助电源敏感元件转换元件基本转换电路被测量电量敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。转换元件:敏感元件的输出就是它的输入,它把输入量转换成电路参数量。基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。1.2信号变换和能量变换信号物理量能量与辐射有关的信号辐射强度波长等辐射能与热有关的信号温度、热量等热能与力学有关的信号力、压力、位移、速度、流速、加速度力学能与电有关的信号电压、电流、电荷、频率等电能与磁有关的信号磁通、磁通变化、磁化等磁能与化学量有关的信号成分、浓度、PH值化学能§1.3传感器的分类分类法型式说明按基本效应分类物理型化学型生物型采用物理效应进行转换采用化学效应进行转换采用生物效应进行转换按构成原理分类结构型物性型以转换元件结构参数变化实现信号转换以转换元件物理特性变化实现信号转换按能量关系分类能量转换型能量控制型传感器输出量直接由被测量能量转换而来传感器输出量能量由外部能源提供,但受输入量控制按工作原理分电阻式电容式电感式压电式磁电式热电式光电式光纤式利用电阻参数变化实现信号转换利用电容参数变化实现信号转换利用电感参数变化实现信号转换利用压电效应实现信号转换利用电磁感应原理实现信号转换利用热电效应实现信号转换利用光电效应实现信号转换利用光纤特性参数变化实现信号转换按输入量分类长度、角度、振动、位移、压力、温度、流量、距离、速度等以被测量命名(即按用途分类)按输出量分类模拟式数字式输出量为模拟信号(电压、电流、……)输出量为数字信号(脉冲、编码、……)传感器特性主要是指输出与输入之间的关系。§1.4传感器的特性当输入量随时间较快地变化时,这一关系称为动态特性。当输入量为常量,或变化极慢时,这一关系称为静态特性;传感器的输出与输入具有确定的对应关系最好呈线性关系。但一般情况下,输出输入不会符合所要求的线性关系,同时由于存在迟滞、蠕变、摩擦、间隙和松动等各种因素以及外界条件的影响,使输出输入对应关系的唯一确定性也不能实现。考虑了这些情况之后,传感器的输出输入作用图大致如图所示。稳定性(零漂)传感器温度供电各种干扰稳定性温漂分辨力冲击与振动电磁场线性滞后重复性灵敏度输入误差因素外界影响传感器输入输出作用图输出取决于传感器本身,可通过传感器本身的改善来加以抑制,有时也可以对外界条件加以限制。衡量传感器特性的主要技术指标传感器的静态特性是指被测量的值处于稳定状态时的输出输入关系。只考虑传感器的静态特性时,输入量与输出量之间的关系式中不含有时间变量。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。一、静态特性技术指标1.线性度传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。输出与输入关系可分为线性特性和非线性特性。从传感器的性能看,希望具有线性关系,即具有理想的输出输入关系。但实际遇到的传感器大多为非线性,如果不考虑迟滞和蠕变等因素,传感器的输出与输入关系可用一个多项式表示:y=a0+a1x+a2x2+…+anxn(2-1)式中:a0——输入量x为零时的输出量;a1,a2,…,an——非线性项系数。各项系数不同,决定了特性曲线的具体形式各不相同。静特性曲线可通过实际测试获得。在实际使用中,为了标定和数据处理的方便,希望得到线性关系,因此引入各种非线性补偿环节。如采用非线性补偿电路或计算机软件进行线性化处理,从而使传感器的输出与输入关系为线性或接近线性。但如果传感器非线性的方次不高,输入量变化范围较小时,可用一条直线(切线或割线)近似地代表实际曲线的一段,使传感器输出—输入特性线性化。所采用的直线称为拟合直线。实际特性曲线与拟合直线之间的偏差称为传感器的非线性误差(或线性度),通常用相对误差γL表示,即%100maxFSLYLr式中:ΔLmax——最大非线性绝对误差;YFS——满量程输出。即使是同类传感器,拟合直线不同,其线性度也是不同的。选取拟合直线的方法很多,用最小二乘法求取的拟合直线的拟合精度最高。校准曲线拟合直线YYmaxmax(X0,Y0)YFSXmaxXO图2-2#(a)理论拟合;(b)过零旋转拟合;(c)端点连线拟合;(d)端点平移拟合2.迟滞0yx⊿HmaxyFS迟滞特性%100/2/1maxFSHHy传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。迟滞特性如图所示,它一般是由实验方法测得。迟滞误差一般以满量程输出的百分数表示,即式中:ΔHmax——正反行程输出值间的最大差值。3.重复性xy0⊿Rmax2⊿Rmax1%100/maxFSRRy重复性误差可用正反行程的最大偏差表示,即重复性是指传感器在输入按同一方向连续多次变动时所得特性曲线不一致的程度。△Rmax1正行程的最大重复性偏差,△Rmax2反行程的最大重复性偏差。4.灵敏度与灵敏度误差γs=(Δk/k)×100%由于某种原因,会引起灵敏度变化,产生灵敏度误差。灵敏度误差用相对误差表示,即可见,传感器输出曲线的斜率就是其灵敏度。对线性特性的传感器,其特性曲线的斜率处处相同,灵敏度k是一常数,与输入量大小无关。K=Δy/Δx传感器输出的变化量y与引起该变化量的输入变化量x之比即为其静态灵敏度,其表达式为△xmin△ymin△yx05.分辨力与阈值分辨力是指传感器能检测到的最小的输入增量。有些传感器,当输入量连续变化时,输出量只作阶梯变化,则分辨力就是输出量的每个“阶梯”所代表的输入量的大小。在传感器输入零点附近的分辨力称为阈值。6.稳定性稳定性是指传感器在长时间工作的情况下输出量发生的变化,有时称为长时间工作稳定性或零点漂移。有两个指标:稳定度:传感器测量输出值在一段时间中的变化;影响量:传感器外部环境和工作条件变化引起输出值的不稳定。2111niiyn7.静态误差取2σ和3σ值即为传感器的静态误差。静态误差也可用相对误差来表示,即%100/3FSy静态误差的求取方法如下:把全部输出数据与拟合直线上对应值的残差,看成是随机分布,求出其标准偏差,即静态误差是指传感器在其全量程内任一点的输出值与其理论值的偏离程度。yi—各测试点的残差;n一测试点数。2222SRLH与精确度有关指标:精密度、准确度和精确度(精度)8、精确度准确度:说明传感器输出值与真值的偏离程度。如,某流量传感器的准确度为0.3m3/s,表示该传感器的输出值与真值偏离0.3m3/s。准确度是系统误差大小的标志,准确度高意味着系统误差小。同样,准确度高不一定精密度高。精密度:说明测量传感器输出值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个传感器,在相当短的时间内连续重复测量多次,其测量结果的分散程度。例如,某测温传感器的精密度为0.5℃。精密度是随即误差大小的标志,精密度高,意味着随机误差小。注意:精密度高不一定准确度高。精确度:是精密度与准确度两者的总和,精确度高表示精密度和准确度都比较高。在最简单的情况下,可取两者的代数和。(a)准确度高而精密度低(b)准确度低而精密度高(c)精确度高被测量随时间变化的形式可能是各种各样的,只要输入量是时间的函数,则其输出量也将是时间的函数。通常研究动态特性是根据标准输入特性来考虑传感器的响应特性。二、传感器的动态特性动态特性指传感器对随时间变化的输入量的响应特性。标准输入有三种:正弦变化的输入阶跃变化的输入线性输入作业:1、简述什么是传感器及传感器的作用和组成。2、传感器的性能指标有哪些?传感技术的发展分为两个方面:●提高与改善传感器的技术性能;●寻找新原理、新材料、新工艺及新功能等。一、改善传感器的性能的技术途径1.差动技术差动技术是传感器中普遍采用的技术。它的应用可显著地减小温度变化、电源波动、外界干扰等对传感器精度的影响,抵消了共模误差,减小非线性误差等。不少传感器由于采用了差动技术,还可使灵敏度增大。§1.5传感器的发展趋势2.平均技术在传感器中普遍采用平均技术可产生平均效应,其原理是利用若干个传感单元同时感受被测量,其输出则是这些单元输出的平均值,若将每个单元可能带来的误差均可看作随机误差且服从正态分布,根据误差理论,总的误差将减小为δΣ=±δ/√n式中n—传感单元数。可见,在传感器中利用平均技术不仅可使传感器误差减小,且可增大信号量,即增大传感器灵敏度。3.补偿与修正技术补偿与修正技术的运用大致针对两种情况:★针对传感器本身特性★针对传感器的工作条件或外界环境对于传感器特性,找出误差的变化规律,或者测出其大小和方向,采用适当的方法加以补偿或修正。针对传感器工作条件或外界环境进行误差补偿,也是提高传感器精度的有力技术措施。不少传感器对温度敏感,由于温度变化引起的误差十分可观。为了解决这个问题,必要时可以控制温度,搞恒温装置,但往往费用太高,或使用现场不允许。而在传感器内引入温度误差补偿又常常是可行的。这时应找出温度对测量值影响的规律,然后引入温度补偿措施。4.屏蔽、隔离与干扰抑制传感器大都要在现场工作,现场的条件往往是难以充分预料的,有时是极其恶劣的。各种外界因素要影响传感器的精度与各有关性能。为了减小测量误差,保证其原有性能,就应设法削弱或消除外界因素对传感器的影响。其方法有:减小传感器对影响因素的灵敏度降低外界因素对传感器实际作用的程度对于电磁干扰,可以采用屏蔽、隔离措施,也可用滤波等方法抑制。对于如温度、湿度、机械振动、气压、声压、辐射、甚至气流等,可采用相应的隔离措施,如隔热、密封、隔振等,或者在变换成为电量后对干扰信号进行分离或抑制,减小其影响。5.稳定性处理在使用传感器时,若测量要求较高,必要时也应对附加的调整元件、后续电路的关键元器件进行老化处理。提高传感器性能的稳定性措施:对材料、元器件或传感器整体进行必要的稳定性处理。如永磁材料的时间老化、温度老化、机械老化及交流稳磁处理、电气元件的老化筛选等。造成传感器性能不稳定的原因是:随着时间的推移和环境条件的变化,构成传感器的各种材料与元器件性能将发生变化。二、传感器的发展动向开发新型传感器开发新材料新工艺的采用集成化、多功能化智能化传感器的工作机理是基于各种效应和定律,由此启发人们进一步探索具有新效应的敏感功能材料,并以此研制出具有新原理的新型物性型传感器件,这是发展高性能、多功能、低成本和小型化传感器的重要途径。结构型传感器发展得较早,目前日趋成熟。结构型传感器,一般说它的结构复杂,体积偏大,价格偏高。物性型传感器大致与之相反,具有不少诱人的优点,加之过去发展也不够。世界各国都在物性型传感器方面投入大量人力、物力加强研究,从而使它成为一个值得注意的发展动向。1.开发新型传感器新型传感器包括:①采用新原理;②填补传感器空白;③仿生传感器等方面。它们之间是互相联系的。2.开发新材料(1)半导体敏感材料(2)陶瓷材料(3)磁性材料(4)智能材料如,半导体氧化物可以制造各种气体传感器,而陶瓷传感器工作温度远高于半导体,光导纤维的应用是传感器材料的重大突破,用它研制的传感器与传统的相
本文标题:chapt1 传感器概述
链接地址:https://www.777doc.com/doc-3165154 .html