您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 第八章 图像信息的光电变换2-1节
第8章图像信息的光电变换8.1图像传感器简介完成图像信息光电变换的功能器件称为光电图像传感器。光电图像传感器的发展历史悠久,种类很多。早在1934年就成功地研制出光电摄像管(Iconoscope),用于室内外的广播电视摄像。但是,它的灵敏度很低,信噪比很低,需要高于10000lx的照度才能获得较为清晰的图像。使它的应用受到限制。1947年制出的超正析像管(ImaigeOrthico)的灵敏度有所提高,但是最低照度仍要求在2000lx以上。8.1.1图像传感器发展历史1954年投放市场的高灵敏摄像管(Vidicon)基本具有了成本低,体积小,结构简单的特点,使广播电视事业和工业电视事业有了更大的发展。1965年推出的氧化铅摄像管(Plumbicon)成功地取代了超正析像管,发展了彩色电视摄像机,使彩色广播电视摄像机的发展产生一次飞跃。诞生了1英寸,1/2英寸,甚至于1/3英寸(8mm)靶面的彩色摄像机。然而,氧化铅视像管抗强光的能力低,余辉效应影响了它的采样速率。1976年,又相继研制出灵敏度更高,成本更低的硒靶管和硅靶管。不断满足人们对图像传感器日益增长的需要。1970年,美国贝尔电话实验室发现的电荷耦合器件(CCD)的原理使图像传感器的发展进入了一个全新的阶段,使图像传感器从真空电子束扫描方式发展成为固体自扫描输出方式。CCD图像传感器不但具有固体器件的所有优点,而且它的自扫描输出方式消除了电子束扫描造成的图像光电转换的非线性失真。即CCD图像传感器的输出信号能够不失真地将光学图像转换成视频电视图像。而且,它的体积、重量、功耗和制造成本是电子束摄像管根本无法达到的。CCD图像传感器的诞生和发展使人们进入了更为广泛应用图像传感器的新时代。利用CCD图像传感器人们可以近距离的实地观测星球表面的图像,可以观察肠、胃耳、鼻、喉等器官内部的病变图像信息,可以观察人们不能直接观测的图像(如放射环境的图像,敌方阵地图像等)。CCD是于1969年由美国贝尔实验室(BellLabs)的维拉·博伊尔(WillardS.Boyle)和乔治·史密斯(GeorgeE.Smith)所发明的。当时贝尔实验室正在发展影像电话和半导体气泡式内存。将这两种新技术结合起来后,博伊尔和史密斯得出一种装置,他们命名为“电荷‘气泡’元件”(ChargeBubbleDevices)。这种装置的特性就是它能沿着一片半导体的表面传递电荷,便尝试用来做为记忆装置,当时只能从暂存器用“注入”电荷的方式输入记忆。但随即发现光电效应能使此种元件表面产生电荷,而组成数位影像。2009年10月6日,瑞典皇家科学院诺贝尔奖委员会宣布将物理学奖项授予高锟(CharlesK.Kao)和两名科学家维拉·博伊尔(WillardS.Boyle)和乔治·史密斯(GeorgeE.Smith)。科学家CharlesK.Kao因为“在光学通信领域中光的传输的开创性成就”而获奖,科学家因博伊尔和乔治-E-史密斯因“发明了成像半导体电路——电荷藕合器件图像传感器CCD”获此殊荣。CCD发明者——维拉·博伊尔和乔治·史密斯8.1.2图像传感器的分类CCD图像传感器目前已经成为图像传感器的主流产品。CCD图像传感器的应用研究成为当今高新技术的主流课题。它的发展推动了广播电视、工业电视、医用电视、军用电视、微光与红外电视技术的发展,带动了机器视觉的发展,促进了公安刑侦、交通指挥、安全保卫等事业的发展。图像传感器按其工作方式可分为扫描型和直视型。扫描型图像传感器件通过电子束扫描或数字电路的自扫描方式将二维光学图像转换成一维时序信号输出出来。这种代表图像信息的一维信号称为视频信号。视频信号可通过信号放大和同步控制等处理后,通过相应的显示设备(如监视器)还原成二维光学图像信号。视频信号的产生、传输与还原过程中都要遵守一定的规则才能保证图像信息不产生失真,这种规则称为制式。例如广播电视系统中遵循的规则被称为电视制式。数字图像传输与处理过程中根据计算机接口方式的不同也规定了许多种类的制式。扫描型图像传感器输出的视频信号可经A/D转换为数字信号(或称其为数字图像信号),存入计算机系统,并在软件的支持下完成图像处理、存储、传输、显示及分析等功能。因此,扫描型图像传感器的应用范围远远超过直视型图像传感器的应用范围。直视型图像传感器用于图像的转换和增强。它的工作方式是将入射辐射图像通过外光电转化为电子图像,再由电场或电磁场的加速与聚焦进行能量的增强,并利用二次电子的发射作用进行电子倍增,最后将增强的电子图像激发荧光屏产生可见光图像。本章主要讨论从光学图像到视频信号的转换原理,即图像传感器的基本工作原理和典型应用问题。8.2光电成像原理与电视制式8.2.1光电成像原理如图8-1所示为光电成像系统的基本原理方框图。可以看出光电成像系统常被分成摄像系统(摄像机)与图像显示系统两部分。摄像系统由光学成像系统(成像物镜)、光电变换系统、同步扫描和图像编码等部分构成,输出全电视视频信号。本节主要讨论光电成像系统。1.摄像机的基本原理在外界照明光照射下或自身发光的景物经成像物镜成像在物镜的像面(光电图像传感器的像面)上,形成二维空间光强分布的光学图像。光电图像传感器完成将光学图像转变成二维“电气”图像的工作。组成一幅图像的最小单元称为像素或像元,像元的大小或一幅图像所包含的像元数决定了图像的分辨率,分辨率越高,图像的细节信息越丰富,图像越清晰,图像质量越高。即将图像分割得越细,图像质量越高。高质量的图像来源于高质量的摄像系统,其中主要是高质量的光电图像传感器。2.图像的分割与扫描将一幅图像分割成若干像素的方法有很多,超正析像管利用电子束扫描光电阴极的方法分割像素;视像管由电阻海颗粒分割;面阵CCD、CMOS图像传感器用光敏单元分割。被分割后的电气图像经扫描才能输出一维时序信号,扫描的方式也与图像传感器的性质有关。面阵CCD采用转移脉冲方式将电荷包(像素信号)输出一维时序信号;CMOS图像传感器采用顺序开通行、列开关的方式完成像素信号的一维输出。因此,有时也称面阵CCD、CMOS图像传感器以自扫描的方式输出一维时序电信号。监视器或电视接收机的显像管几乎都是利用电磁场使电子束偏转而实现行与场扫描,因此,对于行、场扫描的速度、周期等参数进行严格的规定,以便显像管显示理想的图像。如图8-2(a)所示的亮度按正弦分布的光栅图像,电子束扫描一行将输出如图8-2(b)所示正弦时序信号,其纵坐标为与亮度L有关的电压U,横坐标为扫描时间t。若图像的宽度为W,图像在x方向的亮度分布为Lx,设正弦光栅图像的空间频率为fx。电子束从左向右扫描(正程扫描)的时间频率f应为hftWffx(8-1)式中thf为行扫描周期,而W/thf应为电子束的行扫描速度,记为vhf,式可改写为f=fx·vhf(8-2)CCD与CMOS等图像传感器只有遵守上述的扫描方式才能替代电子束摄像管,因此,CCD与CMOS的设计者均使其自扫描制式与电子束摄像管相同。8.2.2电视制式电视的图像发送与接收系统中,图像的采集(摄像机)与图像显示器必需遵守同样的分割规则才能获得理想的图像传输。这个规则被称为电视制式。电视制式的制定,应根据当时的科技发展状况和技术条件,考虑本国或本地区电网对电视系统的干扰情况,人眼对图像的视觉感受和人们对电视图像的要求等条件制定。目前,正在应用中的电视制式一般有三种:其中,我国以及西欧各国的彩色电视制式,该电视制式确定的场频为50Hz,隔行扫描每帧扫描行数为625行,伴音、图像载频带宽为6.5MHz。也称为PAL彩色电视制式。PAL电视制式中规定场周期为20ms,其中场正程时间为18.4ms,场逆程时间为1.6ms;带宽(BandWidth):指每秒钟电子枪扫描过的总象素,等于“水平分辨率x垂直分辨率x场频(画面刷新次数)”。电视图像扫描是由隔行扫描组成场,由两场组成帧,一帧为一幅图像。定义每秒钟扫多少帧为帧频;每秒钟扫描多少场为场频;每秒钟扫描多少行为行频。隔行扫描把一帧图像分成若干行显示,隔行扫描一帧分为2场:奇数场跟偶数场,奇场与偶场合在一起才组成完整的一帧图像,显然帧频是场频的1/2。1.PAL彩色电视制式行频为15625Hz,行周期为64μs,行正程时间为52μs,行逆程时间为12μs。(1)电视图像的宽高比若用W和H分别代表电视屏幕上显示图像的宽度和高度,二者之比称为图像的宽高比,用α表示(8-3)HW(2)帧频与场频每秒中电视屏幕变化的数目称为帧频。我国电网频率为50Hz,因此,采用了50Hz场频和25Hz帧频的隔行扫描的PAL电视制式。场频(VerticalScanningFrequency):又称为“垂直扫描频率”,指每秒钟屏幕刷新的次数2.扫描方式(3)扫描行数与行频帧频与场频确定后,电视扫描系统中还需要确定的参数是每场扫描的行数,或电子束扫描一行所需要的时间,又称为行周期。行周期的倒数称为行频。综合起来,我国现行电视制式(PAL制式)的主要参数为:宽高比α=4/3;场频fv=50Hz;行频fl=15625Hz;场周期T=20ms,其中场正程扫描时间为18.4ms,逆程扫描时间为1.6ms。行周期为64μs,其中行正程扫描时间为52μs,逆程扫描时间为12μs。(1)逐行扫描显像管的电子枪装有水平与垂直两个方向的偏转线圈,线圈中分别流过如图8-3所示的锯齿波电流,电子束在偏转线圈形成的磁场作用下同时进行水平方向和垂直方向的偏转,完成对显像管荧光屏的扫描。(2)隔行扫描根据人眼对图像分辨能力确定扫描的水平行数至少应大于600行,这对于逐行扫描方式,行扫描频率必须大于28800Hz才能保证人眼视觉对图像的最低要求。这样高的行扫描频率,无论对摄像系统还是对显示系统都提出了更高的要求。为了降低行扫描频率,又能保证人眼视觉对图像分辨率及闪耀感的要求,早在20世纪初,人们就提出了隔行扫描分解图像和显示图像的方法。两场光栅均匀交错叠加是对隔行扫描方式的基本要求,否则图像的质量将大为降低。因此要求隔行扫描必须满足下面两个要求:第一,要求下一帧图像的扫描起始点应与上一帧起始点相同,确保各帧扫描光栅重叠;第二,要求相邻两场光栅必须均匀地镶嵌,确保获得最高的清晰度。从第一条要求考虑,每帧扫描的行数应为整数,若在各场扫描电流都一样的情况下,要满足第二条要求,每帧均应为奇数。那末,每场的扫描行数就要出现半行的情况。目前,我国现行的隔行扫描电视制式就是每帧扫描行数为625行,每场扫描行数为312.5行。8.3真空摄像管一、氧化铅视像管的结构视频信号靶网电极聚焦线圈偏转线圈校正线圈聚焦极2聚焦极1阴极控制栅极加速极RLVT靶结构玻璃PINSnO2(透明导电膜)RLVT(40~60V)在入射窗的内表面首先蒸上一层极薄的SnO2透明导电膜,再蒸涂氧化铅本征层,然后,氧化处理形成P型层。由于氧化铅与二氧化锡两者的接触而在交界面处形成N形薄层,这样就构成了NIP型异质结靶。又称信号板。其反偏电压主要施加在本征层。当摄像管有光学图像输入时,则入射光子打到靶上。由于本征层占有靶厚的绝大部分,入射光子大部分被本征层吸收,产生光生载流子。且在强电场的作用下,光生载流子一旦产生,便被内电场拉开,电子拉向N区,空穴被拉向P区。这样,若假定把曝光前本征层两端加有强电场看作是电容充电,则此刻由于光生载流子的漂移运动的结果相当于电容的放电。其结果,在一帧的时间内,在靶面上便获得了与输入图像光照分布相对应的电位分布,完成了图像的变换和记录过程。8.4电荷耦合器件固体摄像器件固体摄像器件的功能:把入射到传感器光敏面上按空间分布的光强信息(可见光、红外辐射等),转换为按时序串行输出的电信号——视频信号,而视频信号能再现入射的光辐射图像。固体摄像器件主要有三大类:电荷耦合器件(ChargeCoupledDevice,即CCD)互补金属氧化物半导体图像传感器(即CMOS)电荷注入器件(ChargeInjenctionDevice,即CID)8.4.1、电荷耦合摄像器件CCD的基本功
本文标题:第八章 图像信息的光电变换2-1节
链接地址:https://www.777doc.com/doc-3166591 .html