您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 无线电通信设备的防雷措施
无线电通信设备的防雷措施ThePrecautionsagainstThunderandLightningforRadioEquipments冯爱国阎完成[摘要]本文首先介绍了雷电的物理特性,然后介绍了通信设备防雷的几种措施,包括安装避雷针和放射性避雷装置,以及在天馈系统中安装避雷器,消除感应雷击等。[关键词]通信防雷;防雷措施;避雷设备雷电是一种自然天气现象,如不注意防护将对人们的生命财产造成严重的危害。对于无线电通信工程而言,在进行工程设计时,尤其要把防雷设计作为一项重要的工作来做。1雷电的物理特性根据观测,地球上每秒钟要出现大约100次的闪电雷击。自古以来雷电就是一种令人畏惧的自然现象,给人类社会造成了一定的危害,因此了解它的形成过程,寻求有效地防护措施意义十分重大。在春夏之交、夏秋之交冷暖空气活动频繁之际,上升暖空气在高处逐渐冷却,凝结出水滴或冻结的冰晶在重力作用下下降,水滴与速度较大的上升气流摩擦,分裂成带不同电荷的大小不一的水滴。上升气流的“分选”作用致使云的上部充满了带正电的小冰晶,而下降速度较大的冰雹把负电带到了云的下部,持续的对流运动,使电荷越聚越多,便形成了具有很强电场的雷暴云。云中的电荷分离后使云与云之间、云与地面之间、云的不同部位之间的电位梯度加大了。当电位梯度大到一定程度,在雷暴云之间或在暴云对地之间放电,这种现象就是雷电。当通信设备的天线架设很高时,带电的云层会在天线上产生感应电荷,如果天线与大地之间有直流通路,电荷会通过土地随时泄放而不会积累起来。因此也不会由于感应在天线与大地之间产生高电位而引起放电,否则就有可能遭受雷击。2通信设备的防雷措施一般来说,建筑物的避免雷击的途径大致有四条:①疏导,即将雷云中的电荷疏导至大地,从而避免直接雷击或感应雷击电流流经被保护的建筑物或设备,从而使这些建筑物或设备免受雷击。②隔离,即将雷电信号和被保护物隔离开来从而避免雷击。③等位,即将铁塔地、工作地、建筑物的公共地等置于同一电位。④消散,即释放出异性电荷和雷云中的电荷进行中和,从而阻止雷电的形成。根据以上的四种避雷途径,具体到一个无线电通信工程的防雷设计来说,其主要的防雷措施有以下几种方法。2.1安装避雷针或避雷装置大部分通信设备的防雷措施,主要是在通信塔上安装避雷针,这种方法经济、简单,但要严格按照以下要求进行安装。①避雷针应当装在高于天线尖端数米,避雷针与天线之间应有一定的间隔,以防止由于避雷针的存在而损坏天线的辐射图形影响通信效果。一般的做法是避雷针成为天线塔体的主杆,通信天线却装在避雷针外缘大约15个波长以外。②避雷地线的直流通路的电阻要求足够低,一般为10~50Ω,由于雷电浪涌电流较大,频谱较宽且持续时间短,因此要求必须有尽量小的电感量。③地线不能用扁平编织线或绞合线,因为这种线电感较大,不利于泄放雷击电流,且容易被腐蚀。要尽可能使用3毫米以上的实心导线,且最好是相同的金属材料。④为了增大地表层的泄放面积,可采用埋设有一定间隔的多根接地体,且相互焊接。如在建筑物的四周以1至2米的间隔埋上10根左右的铜管,并把它们焊接起来。在通信塔上安装避雷针虽然经济简单,但却难做万无一失。对一些重要的通信工程来说,可以考虑安装放射性避雷装置。放射性避雷装置可以说是目前世界最先进的防雷保护装置之一。放射性避雷装置的关键部分是放射源,它能连续自行发射α粒子,使周围空气电离产生大量电子。在雷电场的作用下这些电子不断加速,对空气产生连锁的多极电离或雪崩电离,形成与电场强度成正比的电子流,这时产生的由放射源指向雷云的电离通导会永不间断地中和及释放空间电荷,把已有的低电场消除掉,把可能形成的高电场降为低电场,从而有效地防止发生雷击,起到显著的消雷作用。这种放射性避雷装置的防护面积较大,其半径大约为260米左右,且安全可靠对人身无伤害。2.2防感应雷击的方法除在通信铁塔上安装避雷针或避雷装置的同时,还要注意消除感应雷击,其通常的做法是在天馈系统中安装避雷器。在天馈系统中安装避雷器时要注意以下方面的问题。一是避雷器的接地端必须与地可靠连接,接地电阻不得大于5Ω,否则将影响防雷效果。二是因避雷器存在一定的插入损耗,对于天线辐射信号的强度造成了一定的影响,同时还要注意驻波比的变化,一般要求天馈系统的驻波比小于或等于15。三是安装通信天线时,天线支撑杆要与铁塔可靠连接,连接电阻等于零。馈线应从铁塔内部垂下,并每隔一段距离用铜丝与铁塔固定。对重要的通信工程而言,除在天馈系统中安装避雷器外,还要注意供电系统的防雷,一般的做法是在变压器和配电房安装避雷装置。移动通信基站的维护移动通信系统中的基站主要负责与无线有关的各种功能,为MS(移动台)提供接入系统的UM接口,直接和MS通过无线相连接,系统中基站发生故障对整个移动网的影响是很大的。引起基站故障的原因很多,但大多可归为以下四类:一.因传输问题引起的故障移动通信虽属于无线通信,但其实际为无线与有线的结合体。移动业务交换中心(MSC)与基站控制器(BSC)之间的A接口以及基站控制器(BSC)与基站收发信台(BTS)之间的ABIS接口其物理连接均为采用标准的2.048MB/S的PCM数字传输来实现。另外基站的各部件的稳定工作离不开稳定的时钟信号,而基站的时钟信号是从PCM传输中提取的,爱立信的基站不提供外部时钟输入的端口,这些基站设备是基于采用传统的PDH组网方试而设计的。目前传输设备正从PDH向SDH逐步过度,而按照SDH的传输体制,由于指针调整的原因,其传送时钟是通过线路码传输,由分插复用器(ADM)专门的时钟端口输出。如果采用从SDH的随路码流中提取时钟的方法,将会带来诸如失步,滑码,死站的问题。如新桥站原采用爱立信RBS200设备,传输采用SDH系统,此站自开通以来一直不稳定,后经爱立信工程师到现场检查发现为基站同步不好,建议采用PDH传输系统,或基站采用RBS2000设备,(RBS2000对同步要求较RBS200低),后用RBS2000设备替换原RBS200设备,基站工作正常至今。日常维护中经常有基站所有或部分载频不稳定,时而退服时而工作的现象,BSC侧对CF测试结果为BTSCOMMUNICATIONNOTPOSSIBLE或CFLOADFAILED。此类故障大都为传输不稳定有误码,滑码而引起的。当传输误码积累到一定时,BSC无法对基站进行控制,数据装载,此时可在本地模式下通过OMT对IDB数据从新装载,复位后可恢复正常。二,因基站软件问题引起的故障基站系统中的软件是指挥和管理基站各部件有序,正常工作的。若基站IDB数据与基站情况不匹配,则基站一定无法正常工作。如在对北码头基站进行传输压缩(两条压缩为一条)后发现A,B小区工作正常而C小区工作不正常,说明BSC无法与C小区进行通信,于是怀疑与之想邻的B小区的软件设置有误,经查看发现B小区的传输方式被误设为STANDALONE(单独方式),一条传输时ABC各扇区的传输方式应分别设为CASCADE,CASCADE,STANDALONE,将B的传输方式改为CASCADE后基站恢复正常。三,因基站硬件引起的故障此类故障较常见,现象也较明显,一般有故障的硬件其红色FOULT灯会点亮,但有时不能被表面假象所迷惑。例如唐闸基站B扇区一载频(TRU)退服,到站后发现此载频的红色FOULT灯和TXNOTENABLE灯都亮,于是判断为TRU硬件损坏,更换后故障现象依旧,此时更换TRU就犯了头痛医头,脚痛医脚的错误,TRU退服可能为其本身硬件故障也可能为与之相连的其他硬件或连线的故障。用OMT软件诊断后提示为CU到TRU间的连线故障,检查发现连线松动,重新连接后故障消失。对此类故障建议先用OMT软件进行故障定位,根据OMT的建议替换单元进行操作,而不能只看表面。四,因各种干扰引起的故障移动通信系统中的干扰也会影响基站的正常工作,有同频干扰,邻频干扰,互调干扰等。现在陆地蜂窝移动通信系统采用同频复用技术来提高频率利用率,增加系统容量,但同时也引入了各种干扰。日常维护中新建站以及扩容站新加载频的频点选取不合理基站将无法正常工作,对此类故障应与网优配合,综合考虑各种因素,选取合理频点,消除以上干扰。对移动通信系统中基站的各类故障应认真分析,找到其真正原因,才能以最快的速度排除故障,提高网络质量。五、移动通信基站维修实例1爱立信模拟基站系统RBS883障碍处理一例江苏南通易家桥站的模拟基站系统为RBS883,原经安装调测后,基站能正常工作。运行一段时间后,交换侧测试发现系统中B小区第十个载频没有发射功率,经到现场观察发现其对应的COMB不能调谐。我们知道,江苏目前的爱立信模拟基站系统RBS883一般均使用自动调谐的形式,即功率合成器采用自动调谐合成器。其调谐过程主要是由功率监测单元接受从功率合成器中耦合出的-32dB的射频信号和从方向耦合器中耦合出的-40dB的射频信号,通过对这两个射频信号进行比较处理后,功率监测单元启动并控制相应的自动调谐合成器上的电动步进马达转动,从而实现自动调谐功能。下面我们对RBS883的具体结构作一说明。在RBS883系统中,自动调谐功能主要由以下结构共同协调完成:功率监测单元(PMU-AT)、信道收发信机(TRM)、自动调谐合成器(COMB)、方向耦合器。其工作原理如下:当某一信道收发信机的发信机打开后,其输出功率信号经射频线输入到功率合成器中的环形隔离器并最后进入合成器腔体中,同时从环形隔离器中(功率合成器上的Pi口)耦合出-32dB的射频信号,经功率监测单元面板上的参考信号输入端口(COMB端口,共有八个,分别与位于无线机架A中的八个合成器腔体相连),输入到功率监测单元中;另外,输入到合成器腔体中的射频信号最后进入方向耦合器并经天馈线系统发射,同时也从方向耦合器的前向功率(PFWD)口耦合-40dB的射频信号,经功率监测单元面板上的PoutFWD口输入到功率监测单元中。功率监测单元对以上两种射频信号进行比较处理,当两信号相差7-9dB以上时,功率监测单元就会通过步进马达控制线(从功率监测单元面板上的M01-M08端口至功率合成器上的步进马达信号连接头)向相应的功率合成器送步进马达控制电源信号,启动步进马达转动,并控制其转动量使其准确调谐到相应的频率上。首先更换COMB,问题依旧,证明COMB正常;将功率计接到TRM的TX口,用LCTRL1软件将TRM的功率打开,发现功率计有功率显示,证明信道盘TRM正常;一般说来,如果功率监测单元或方向耦合器坏,会导致该小区所有载频出现问题,而不应是某一载频退服,因此我们可断定功率监测单元及方向耦合器没有问题。于是我们将目光转移到连线上:与相邻载频(第八个或第十二个载频)同时对换COMB端的Pi输出头与马达连接后发现,该载频能正常工作,而相邻载频却不能工作,从而将障碍定位在Pi输出线和马达连接线上;更换从功率合成器上Pi口至功率监测单元上COMB口间的连线后,载频正常工作,问题解决。这些问题都因功率合成器上Pi口至功率监测单元上COMB口间的连线损坏,功率监测单元无法接收从功率合成器中耦合出的-32dB的射频信号,进而无法控制COMB调谐。2爱立信数字基站系统RBS200障碍处理一例江苏南通的海北站(RBS200系统)曾发生过某个载频不能工作的情况:交换侧测试反应为该套载频接收正常但不能有效发射;到基站观察发现,该套载频在推服过程中,RRX、TRXC及SPU一切正常,而RTX不能有效锁定,导致整套载频无法正常工作。我们知道,爱立信数字基站系统RBS200一般均采用自动调谐合成器的形式。自动调成器实质是一个窄带合路器,其输入被机械地调谐到指定的GSM频点。在每一个合路器的输入端都有一个步进马达,它受控于它所连接的RTX。两个输入被合路成一路输出,若干个合成器的输出可以被连接成一条链。在调谐期间,发射机将其合路器的输入设置到可以给出最大前向功率的位置,而且还检验反射回的功率,如果反射功率超过最大允许值,那么发射机将其自身禁用并发出一个错误代码。下面我们联系RBS200的具体结构作一说明。RBS
本文标题:无线电通信设备的防雷措施
链接地址:https://www.777doc.com/doc-316773 .html