您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 液压泵的结构及工作原理081028
液压泵的结构及工作原理一、泵的分类二、泵的参数及计算公式三、齿轮泵四、叶片泵五、柱塞泵一、液压泵的分类液压泵液压泵是将原动机的机械能转换为液压能的能量转换元件、在液压传动中、液压泵作为动力元件向液压系统提供液压能。二、液压泵的主要技术参数和计算公式2.1液压泵的主要技术参数(1)泵的排量(mL/r)泵每旋转一周、所能排出的液体体积。(2)泵的理论流量(L/min)在额定转数时、用计算方法得到的单位时间内泵能排出的最大流量。(3)泵的额定流量(L/min)在正常工作条件下;保证泵长时间运转所能输出的最大流量。(4)泵的额定压力(MPa)在正常工作条件下,能保证泵能长时间运转的最高压力。(5)泵的最高压力(MPa)允许泵在短时间内超过额定压力运转时的最高压(6)泵的额定转数(r/min)在额定压力下,能保证长时间正常运转的最高转数。(7)泵的最高转数(r/min)在额定压力下,允许泵在短时间内超过额定转速运转时的最高转数。(8)泵的容积效率(%)泵的实际输出流量与理论流量的比值。(9)泵的总效率(%)泵输出的液压功率与输入的机械功率的比值。(10)泵的驱动功率(kW)在正常工作条件下能驱动液压泵的机械功率。二、液压泵的主要技术参数和计算公式参数名称单位计算公式符号说明流量L/minq0=V·nq=V·n·η0V—排量(mL/r)n—转速(r/min)q0—理论流量(L/min)q—实际流量(L/min)输入功率kWPi=2πTn/600Pi—输入功率(kW)T—转矩(N·m)输出功率kWP0=pq/60P0—输出功率(kW)p—输出压力(MPa)容积效率%η0=q/q0*100η0——容积效率(%)机械效率%ηm=1000pq0/2πTn*100ηm——机械效率(%)总效率%ηm=p0/pi*100η—总效率(%)2.2液压泵的计算公式三、齿轮泵3.1齿轮泵的概述•齿轮泵是一种常用的液压泵,它的主要特点是结构简单,制造方便,价格低廉,体积小,重量轻,自吸性好,对油液污染不敏感,工作可靠;其主要缺点是流量和压力脉动大,噪声大,排量不可调。•泵主要由主、从动齿轮,驱动轴,泵体及侧板等主要零件构成。三、齿轮泵3.2外啮合齿轮泵的工作原理•外啮合齿轮泵的工作原理和结构如图2.3所示。泵体内相互啮合的主、从动齿轮2和3与两端盖及泵体一起构成密封工作容积,齿轮的啮合点将左、右两腔隔开,形成了吸、压油腔,当齿轮按图示方向旋转时,右侧吸油腔内的轮齿脱离啮合,密封工作腔容积不断增大,形成部分真空,油液在大气压力作用下从油箱经吸油管进入吸油腔,并被旋转的轮齿带入左侧的压油腔。左侧压油腔内的轮齿不断进入啮合,使密封工作腔容积减小,油液受到挤压被排往系统,这就是齿轮泵的吸油和压油过程。在齿轮泵的啮合过程中,啮合点沿啮合线,把吸油区和压油区分开。3、齿轮泵图2.3外啮合齿轮泵的工作原理1-泵体;2.主动齿轮;3-从动齿轮三、齿轮泵3.3、齿轮泵困油的现象•齿轮泵要平稳地工作,齿轮啮合时的重叠系数必须大于1,即至少有一对以上的轮齿同时啮合,因此,在工作过程中,就有一部分油液困在两对轮齿啮合时所形成的封闭油腔之内,如图2.5所示,这个密封容积的大小随齿轮转动而变化。图2.5(a)到2.5(b),密封容积逐渐减小;图2.5(b)到2.5(c),密封容积逐渐增大;图2.5(c)到2.5(d)密封容积又会减小,如此产生了密封容积周期性的增大减小。受困油液受到挤压而产生瞬间高压,密封容腔的受困油液若无油道与排油口相通,油液将从缝隙中被挤出,导致油液发热,轴承等零件也受到附加冲击载荷的作用;若密封容积增大时,无油液的补充,又会造成局部真空,使溶于油液中的气体分离出来,产生气穴,这就是齿轮泵的困油现象。•困油现象使齿轮泵产生强烈的噪声,并引起振动和汽蚀,同时降低泵的容积效率,影响工作的平稳性和使用寿命。消除困油的方法,通常是在两端盖板上开卸槽,见图2.5(d)中的虚线方框。当封闭容积减小时,通过右边的卸菏槽与压油腔相通,而封闭容积增大时,通过左边的卸荷槽与吸油腔通,两卸荷糟的间距必须确保在任何时候都不使吸、排油相通三、齿轮泵图2.5齿轮泵的困油现象及消除措施三、齿轮泵3.4齿轮泵的径向不平衡力•在齿轮泵中,油液作用在轮外缘的压力是不均匀的,从低压腔到高压腔,压力沿齿轮旋转的方向逐齿递增,因此,齿轮和轴受到径向不平衡力的作用,工作压力越高,径向不平衡力越大,径向不平衡力很大时,能使泵轴弯曲,导致齿顶压向定子的低压端,使定子偏磨,同时也加速轴承的磨损,降低轴承使用寿命。为了减小径向不平衡力的影响,常采取缩小压油口的办法,使压油腔的压力仅作用在一个齿到两个齿的范围内,同时,适当增大径向间隙,使齿顶不与定子内表面产生金属接触,并在支撑上多采用滚针轴承或滑动轴承。三、齿轮泵3.5齿轮泵的泄漏通道及端面间隙的自动补偿•在液压泵中,运动件间的密封是靠微小间隙密封的,这些微小间隙从运动学上形成摩擦副,同时,高压腔的油液通过间隙向低压腔的泄漏是不可避免的;齿轮泵压油腔的压力油可通过三条途经泄漏到吸油腔去:•一是通过齿轮啮合线处的间隙——齿侧间隙,•二是通过泵体定子环内孔和齿顶间的径向间隙——齿顶间隙,•三是通过齿轮两端面和侧板间的间隙——端面间隙。•在这三类间隙中,端面间隙的泄漏量最大,压力越高,由间隙泄漏的液压油就愈多。三、齿轮泵3.5齿轮泵的泄漏通道及端面间隙的自动补偿•通常采用的自动补偿端面间隙装置有:浮动轴套式和弹性侧板式两种,其原理都是引入压力油使轴套或侧板紧贴在齿轮端面上,压力愈高,间隙愈小,可自动补偿端面磨损和减小间隙。齿轮泵的浮动轴套是浮动安装的,轴套外侧的空腔与泵的压油腔相通,当泵工作时,浮动轴套受油压的作用而压向齿轮端面,将齿轮两侧面压紧,从而补偿了端面间隙。三、齿轮泵3.6内啮合齿轮泵的结构及工作原理内啮合齿轮泵有渐开线齿形和摆线齿形两种,其结构示意可见图2.6。这两种内啮合齿轮泵工作原理和主要特点皆同于外啮合齿轮泵。在渐开线齿形内啮合齿轮泵中,小齿轮和内齿轮之间要装一块月牙隔板,以便把吸油腔和压油腔隔开,如图2.6(a);摆线齿形啮合齿轮泵又称摆线转子泵,在这种泵中,小齿轮和内齿轮只相差一齿,因而不需设置隔板,如图2.6(b)。内啮合齿轮泵中的小齿轮是主动轮,大齿轮为从动轮,在工作时大齿轮随小齿轮同向旋转。三、齿轮泵图2.6内啮合齿轮泵1-吸油腔,2.压油腔,3-隔板三、齿轮泵3.7内啮合齿轮泵的特点•内啮合齿轮泵的结构紧凑,尺寸小,重量轻,运转平稳,噪声低,在高转速工作时有较高的容积效率。但在低速、高压下工作时,压力脉动大,容积效率低,所以一般用于中、低压系统。在闭式系统中,常用这种泵作为补油泵。内啮合齿轮泵的缺点是齿形复杂,加工困难,价格较贵,且不适合高速高压工况。四、叶片泵4.1叶片泵•叶片泵有单作用式和双用式两大类,它输出流量均匀,脉动小,噪声小,但结构较复杂,对油液的污染比较敏感。四、叶片泵•4.1单作用叶片泵工作原理•图2.7为单作用叶片泵的工作原理,泵由转2、定子3、叶片4和配流盘等件组成。定子的内表面是圆柱面,转子和定子中心之间存在着偏心,叶片在转子的槽内可灵活滑动,在转子转动时的离心力以及叶片根部油压力作用下,叶片顶部贴紧在定子内表面上,于是,两相邻叶片、配油盘、定子和转子便形成了一个密封的工作腔。当转子按图示方向旋转时,图右侧的叶片向外伸出,密封工作腔容积逐渐增大,产生真空,油液通过吸油口5、配油盘上的吸油窗口进入密封工作腔;而在图的左侧,叶片往里缩进,密封腔的容积逐渐缩小,密封腔中的油液排往配油盘排油窗口,经排油口1被输送到系统中去。这种泵在转子转一转的过程中,吸油、压油各一次,故称单作用叶片泵。从力学上讲,转子上受有单方向的液压不平衡作用力,故又称非平衡式泵,其轴承负载大。若改变定子和转子间的偏心距的大小,便可改变泵的排量,形成变量叶片泵。四、叶片泵图2.7单作用叶片泵工作原理1-压油口;2.转子;3-定子;4-叶片;5-吸油口四、叶片泵4.2单作用叶片泵和变量原理•就变量叶片泵的变量工作原理来分,有内反馈式和外反馈式两种。•(1)限压式内反馈变量叶片泵•内反馈式变量泵操纵力来自泵本身的排油压力,内反馈式变量叶片泵配流盘的吸,排油窗口的布置如图2.9。由于存在偏角,排油压力对定子环的作用力可以分解为垂直于轴线的分力F1及与之平行的调节分力F2,调节分力F2与调节弹簧的压缩恢复力、定子运动的摩擦力及定子运动的惯性力相平衡。定子相对于转子的偏心距、泵的排量大小可由力的相对平衡来决定,变量特性曲线如图2.10所示。图2.9变量原理图2.10变量特特性曲线•当泵的工作压力所形成的调节分力F2小于弹簧预紧力时,泵的定子环对转子的偏心距保持在最大值,不随工作压力的变化而变,由于泄漏,泵的实际输出流量随其压力增加而稍有下降,如图2.10中AB;当泵的工作压力超过值后,调节分力F2大于弹簧预紧力,随工作压力的增加,力F2增加,使定子环向减小偏心距的方向移动,泵的排量开始下降。当工作压力到达时,与定子环的偏心量对应的泵的理论流量等于它的泄漏量,泵的实际排出流量为零,此时泵的输出压力为最大。•改变调节弹簧的预紧力可以改变泵的特性曲线,增加调节弹簧的预紧力使点向右移,BC线则平行右移。更换调节弹簧,改变其弹簧刚度,可改变BC段的斜率,调节弹簧刚度增加,BC线变平坦,调节弹簧刚度减弱,BC线变徒。调节最大流量调节螺钉,可以调节曲线A点在纵座标上的位置。•内反馈式变量泵利用泵本身的排出压力和流量推动变量机构,在泵的理论排量接近零工况时,泵的输出流量为零,因此便不可能继续推动变量机构来使泵的流量反向,所以内馈式变量泵仅能用于单向变量。图2.11外反馈限压式变量叶片泵1-转子;2.弹簧;3-定子;4-滑块滚针支承;5-反馈柱塞;6-流量调节螺钉四、叶片泵4.3单作用叶片的特点•(1)存在困油现象•配流盘的吸、排油窗口间的密封角略大于两相邻叶片间的夹角,而单作用叶片泵的定子不存在与转子同心的圆弧段,因此,当上述被封闭的容腔发生变化时,会产生与齿轮泵相类似的困油现象,通常,通过配流盘排油窗口边缘开三角卸荷槽的方法来消除困油现象。•(2)叶片沿旋转方向向后倾斜•叶片仅靠离心力紧贴定子表面,考虑到叶片上还受哥氏力和摩擦力的作用,为了使叶片所受的合力与叶片的滑动方向一致,保证叶片更容易的从叶片槽滑出,叶片槽常加工成沿旋转方向向后倾斜。•(3)叶片根部的容积不影响泵的流量•由于叶片头部和底部同时处在排油区或吸油区中,所以叶片厚度对泵的流量没有多大影响。•(4)转子承受径向液压力•单作用叶片泵转子上的径向液压力不平衡,轴承负荷较大。这使泵的工作压力和排量的提高均受到限制。四、叶片泵4.4双作用叶片泵工作原理•图2.12为双作用叶片泵的工作原理图,它的作用原理和单作用叶片泵相似,不同之处只在于定子内表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线组成,且定子和转子是同心的,在图2.12中,当转子顺时针方向旋转时,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区将吸、压油区隔开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的压力径向平衡,所以又称为平衡式叶片泵。四、叶片泵图2.12双作用叶片泵工作原理1-定子;2.压油口;3-转子;4-叶片;5-吸油口四、叶片泵4.5双作用叶片泵的结构特点;•(1)定子过度曲线•定子内表面的曲线由四段圆弧和四段过渡曲线组成,泵的动力学特性很大程度上受过渡曲线的影响。理想的过渡曲线不仅应使叶片在槽中滑动时的径向速度变化均匀,而且应使叶片转到过渡曲线和圆弧段交接点处的加速度突变不大,以减小冲击和噪声,同时,还应使泵的瞬时流量的脉动最小。•(2)叶片安放角;•设置叶片安放角有利于叶片在槽内滑动,为了保证叶片顺利的从叶片槽滑出,减小叶片的压力角,根据过渡曲线的动力学特性,双作用叶
本文标题:液压泵的结构及工作原理081028
链接地址:https://www.777doc.com/doc-3172957 .html