您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 三、滑块、木板(平板车)模型+弹簧
1三、滑块、木板(平板车)模型+弹簧例1、如图所示,质量M=4kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5m,这段滑板与木块A之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.可视为质点的小木块A以速度v0=0.2,由滑板B左端开始沿滑板B表面向右运动.已知A的质量m=1kg,g取10m/s2.求:(1)弹簧被压缩到最短时木块A的速度;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.例2、如图所示,质量M=4kg的木板AB静止放在光滑水平面上,木板右端B点固定着一根轻质弹簧,弹簧自由端在C点,C到木板左端的距离L=0.5m,质量为m=1kg的小木块(可视为质点)静止在木板的左端,它与木板间的动摩擦因数μ=0.2.木板AB受到水平向左F=14N的恒力,作用时间t后撤去,恒力F撤去时小木块恰好到达弹簧的自由端C处,取g=10m/s2.试求:(1)水平恒力F作用的时间t;(2)木块压缩弹簧的过程中弹簧的最大弹性势能.2例3、如图所示,质量M为4kg的平板小车静止在光滑的水平面上,小车左端放一质量为lkg的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的10N·s的瞬间冲量,木块便沿车向右滑行,在与弹簧相碰后又沿原路返回,并恰好能达到小车的左端,求:(1)弹簧被压缩到最短时平板车的速度v;(2)木块返回小车左端时的动能Ek;(3)弹簧获得的最大弹性势能Epm.例4、在光滑的水平面上有一质量M=2kg的木板A,其右端挡板上固定一根轻质弹簧,在靠近木板左端的P处有一大小忽略不计质量m=2kg的滑块B.木板上Q处的左侧粗糙,右侧光滑.且PQ间距离L=2m,如图所示.某时刻木板A以1m/sAv的速度向左滑行,同时滑块B以5m/sBv的速度向右滑行,当滑块B与P处相距43L时,二者刚好处于相对静止状态,若在二者共同运动方向的前方有一障碍物,木板A与它碰后以原速率反弹(碰后立即撤去该障碍物).求B与A的粗糙面之间的动摩擦因数和滑块B最终停在木板A上的位置.(g取10m/s2)3四、碰撞模型+弹簧例5、如图所示,位于光滑水平桌面上的小滑块P和Q都可视作质点,质量相等.Q与轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于A.P的初动能B.P的初动能的1/2C.P的初动能的1/3D.P的初动能的1/4例6、如图所示,质量为1.0kg的物体m1,以5m/s的速度在水平桌面上AB部分的左侧向右运动,桌面AB部分与m1间的动摩擦因数μ=0.2,AB间的距离s=2.25m,桌面其他部分光滑。m1滑到桌边处与质量为2.5kg的静止物体m2发生正碰,碰撞后m2在坚直方向上落下0.6m时速度大小为4m/s,若g取10m/s2,问m1碰撞后静止在什么位置?例7、如图所示,EF为水平地面,O点左侧是粗糙的,右侧是光滑的,一轻质弹簧右端固定在墙壁上,左端与静止在O点、质量为m的小物块A连接,弹簧处于原长状态.质量为2m的物块B在大小为F的水平恒力作用下由C处从静止开始向右运动,已知物块B与地面EO段间的滑动摩擦力大小为5F,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F.物块B和物块A可视为质点.已知CD=5L,OD=L.求:(1)撤去外力后弹簧的最大弹性势能?(2)物块B从O点开始向左运动直到静止所用的时间是多少?PQ4例8、如图所示,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角α=37°,A、B是两个质量均为m=1㎏的小滑块(可视为质点),C为左端附有胶泥的质量不计的薄板,D为两端分别连接B和C的轻质弹簧.薄板、弹簧和滑块B均处于静止状态.当滑块A置于斜面上且受到大小F=4N,方向垂直斜面向下的恒力作用时,恰能向下匀速运动.现撤去F,让滑块A从斜面上距斜面底端L=1m处由静止下滑,若取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求滑块A到达斜面底端时的速度大小v1;(2)滑块A与C接触后粘连在一起(不计此过程中的机械能损失),求此后两滑块和弹簧构成的系统在相互作用过程中,弹簧的最大弹性势能Ep.五、碰撞模型+竖直轨道(圆运动)例9、如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低点B时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A.求男演员落地点C与O点的水平距离s.已知男演员质量m1和女演员质量m2之比122mm=,秋千的质量不计,秋千的摆长为R,C点比O点低5R.5例10、如图,半径为R的光滑圆形轨道固定在竖直面内.小球A、B质量分别为m、βm(β为待定系数).A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为14R,碰撞中无机械能损失.重力加速度为g.试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度.例11、如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧连一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O/点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m=1.0kg的小物块紧靠弹簧,小物块与水平轨道间的动摩擦因数μ=0.5.整个装置处于静止状态,现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A,g取10m/s2.求:(1)解除锁定前弹簧的弹性势能;(2)小物块第二次经过O/点时的速度大小;(3)最终小物块与车相对静止时距O/点的距离.6例12、如图所示,在光滑水平地面上有一辆质量为M的小车,车上装有一个半径为R的光滑圆环.一个质量为m的小滑块从跟车面等高的平台上以速度V0滑入圆环.试问:小滑块的初速度V0满足什么条件才能使它运动到环顶时恰好对环顶无压力?例13、如图所示,球A无初速地沿光滑圆弧滑下至最低点C后,又沿水平轨道前进至D与质量、大小完全相同的球B发生动能没有损失的碰撞。B球用长L的细线悬于O点,恰与水平地面切于D点。A球与水平地面间摩擦系数=0.1,已知球A初始高度h=2米,CD=1米。问:(1)若悬线L=2米,A与B能碰几次?最后A球停在何处?(2)若球B能绕悬点O在竖直平面内旋转,L满足什么条件时,A、B将只能碰两次?A球最终停于何处?7例1.【答案】(1)2m/s;(2)39J解析:(1)弹簧被压缩到最短时,木块A与滑板B具有相同的速度,设为V,从木块A开始沿滑板B表面向右运动至弹簧被压缩到最短的过程中,A、B系统的动量守恒,则mv0=(M+m)V①V=mMmv0②木块A的速度:V=2m/s③(2)木块A压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大.由能量守恒,得EP=22011()22mvmMvmgL+-④解得EP=39J例2.【答案】(1)1s;(2)0.4J例3.【答案】(1)2m/s;(2)2J;(3)20J解析:(1)由题意水平地面光滑,可知小车和木块组成的系统在水平方向动量守恒,当弹簧被压缩到最短时,二者速度相等,设木块获得的初速度为v0,由动量定理得l=mv0①运动过程中水平方向动量守恒,则mv0=(M+m)v②由①②解得v=2m/s则弹簧被压缩到最短时平板车的速度为2m/s,方向与木块初速度方向相同.(2)当木块返回到小车左端时,二者速度也相同,设其共同速度为v1,由系统动量守恒可得mv0=(M+m)v1解得v1=2m/s故小块此时的动能2112J2kEmv(3)设弹簧获得的最大弹性势能为Epm,木块和小车间的摩擦因数为μ,小车长为L.对整个运动过程分析可知,从开始到弹簧压缩到最短时,木块和小车的速度相等.则有22011()22pmEmvMmvmgL整个过程中,对系统应用动能定理得:2201112()22mgLmvMmv解得2201111[]222pmEmgLmvmv=20J.例4.【答案】在Q点左边离Q点0.17m解析:设M、m共同速度为v,由动量守恒定律,得()BAmvMvMmv,解得2m/sBAmvMvvMm对A,B组成的系统,由能量守恒,得2223111()4222ABmgLMvmvMmv8代入数据解得6.0木板A与障碍物发生碰撞后以原速率反弹,假设B向右滑行并与弹簧发生相互作用,当A、B再次处于相对静止状态时,两者的共同速度为u,在此过程中,A、B和弹簧组成的系统动量守恒、能量守恒.由动量守恒定律得()mvMvMmu设B相对A的路程为s,由能量守恒,有2211()()22mgsMmvMmu代入数据得2m3s由于4Ls,所以B滑过Q点并与弹簧相互作用,然后相对A向左滑动到Q点左边,设离Q点距离为s1,则110.17m4ssL例5.B提示:设P的初速度为v0,P、Q通过弹簧发生碰撞,当两滑块速度相等时,弹簧压缩到最短,弹性势能最大,设此时共同速度为v,对P、Q(包括弹簧)组成的系统,由动量守恒定律,有02mvmv①由机械能守恒定律,有22Pm01122Emvmv×2②联立①②两式解得22Pm00111422Emvmv×例6.解析:m1向右运动经过AB段作匀减速运动,由动能定律可以求出离开B点继续向右运动的速度为4米/秒;和m2发生碰撞后,m2作平抛运动,由平抛运动知识可以求出m2做平抛运动的初速度(碰撞之后)为2米/秒。利用动量守恒定律可以求出碰撞之后瞬间m1的速度为1米/秒。由动能定律可以求出返回经过AB段,离B点0.25米处停止。例7.【答案】(1)113FL;(2)10223LmF解析:(1)设B与A碰撞前速度为v0,由动能定理,得201()5252FFLmv,则02FLvmB与A在O点碰撞,设碰后共同速度为v1,由动量守恒得0110242(2)33FLmvmmvvvm9碰后B和A一起运动,运动到D点时撤去外力F后,当它们的共同速度减小为零时,弹簧的弹性势能最大,设为Epm,则由能量守恒得21111323pmpmEFLmvEFL(2)设A、B一起向左运动回到O点的速度为v2,由机械能守恒得2221122323pmFLEmvvm经过O点后,B和A分离,B在滑动摩擦力的作用下做匀减速直线运动,设运动时间为t,由动量定理得2025Ftmv,则10223LmtF.例8.【答案】(1)2m/s;(2)1J解析:(1)滑块A匀速下滑时,受重力mg、恒力F、斜面支持力FN和摩擦力Fμ作用,由平衡条件有sin37NmgFcos37NFmgF即sin37(cos37)mgmgF化简后得sin37cos37mgmgF,代入数据解得动摩擦因数0.5撤去F后,滑块A匀加速下滑,由动能定理有211(sin37cos37)2mgmgLmv代入数据得12m/sv(2)两滑块和弹簧构成的系统在相互作用过程中动量守恒,当它们速度相等时,弹簧具有最大弹性势能,设共同速度为2v,由动量守恒和能量守恒定律有12()mvmmv221211222()PEmvmv联立解得1JPE例9.【答案】8R解析:设分离前男女演员在秋千最低点B的速度为vB,由机械能守恒定律,得212121()()2BmmgRmmv+=+设刚分离时男演员速度的大小为v1,方向与v0相同;女演员速度的大小为v2,方向与v0相反,由动量守恒:(m1+m2)v0=m1v1-m2v2分离后,男演员做平抛运动,设男演员从被推出到落在C点所需的时间为t,根据题给10条件,从运动学规律,21142Rgtsvt==根据题给条件,女演员刚好回到A点,由机械能守恒定律得222
本文标题:三、滑块、木板(平板车)模型+弹簧
链接地址:https://www.777doc.com/doc-3174701 .html