您好,欢迎访问三七文档
孔加工常用工艺装备(1)一、孔加工用刀具在金属切削中,孔加工占很大比重。孔加工的刀具种类很多,按其用途可分为两类:一类是在实心材料上加工出孔的刀具,如麻花钻、扁钻、深孔钻等;另一类是对工件已有孔进行再加工的刀具,如扩孔钻、铰刀、镗刀等。本节介绍常用的几种孔加工刀具。(一)麻花钻1.麻花钻的结构要素图7-32为麻花钻的结构图。它由工作部分、柄部和颈部组成。[快车下载]untitled1.bmp:(1)工作部分麻花钻的工作部分分为切削部分和导向部分。①切削部分麻花钻可看成为两把内孔车刀组成的组合体。如图7-33所示。而这两把内孔车刀必须有一实心部分——钻心将两者联成一个整体。钻心使两条主切削刃不能直接相交于轴心处,而相互错开,使钻心形成了独立的切削刃——横刃。因此麻花钻的切削部分有两条主切削刃、两条副切削刃和一条横刃(如图7-32b所示)。麻花钻的钻心直径取为(0.125~0.15)do(do为钻头直径)。为了提高钻头的强度和刚度,把钻心做成正锥体,钻心从切削部分向尾部逐渐增大,其增大量每100mm长度上为1.4~2.0mm。[快车下载]untitled2.bmp:两条主切削刃在与它们平行的平面上投影的夹角称为锋角2Φ,如图7-34所示。标准麻花钻的锋角2Φ=118°,此时两条主切削刃呈直线;若磨出的锋角2Φ>118°,则主切削刃呈凹形;若2Φ<118°,则主切削刃呈凸形。②导向部分导向部分在钻孔时起引导作用,也是切削部分的后备部分。导向部分的两条螺旋槽形成钻头的前刀面,也是排屑、容屑和切削液流入的空间。螺旋槽的螺旋角β是指螺旋槽最外缘的螺旋线展开成直线后与钻头轴线之间的夹角,如图7-34所示。愈靠近钻头中心螺旋角愈小。螺旋角β增大,可获得较大前角,因而切削轻快,易于排屑,但会削弱切削刃的强度和钻头的刚性。导向部分的棱边即为钻头的副切削刃,其后刀面呈狭窄的圆柱面。标准麻花钻导向部分直径向柄部方向逐渐减小,其减小量每100mm长度上为0.03~0.12mm,螺旋角β可减小棱边与工件孔壁的摩擦,也形成了副偏角.[快车下载]untitled3.bmp:(2)柄部柄部用来装夹钻头和传递扭矩。钻头直径do<12mm常制成圆柱柄(直柄);钻头直径do>12mm常采用圆锥柄。(3)颈部颈部是柄部与工作部分的连接部分,并作为磨外径时砂轮退刀和打印标记处。小直径钻头不做出颈部。2.麻花钻切削部分的几何角度由图7-33所示,钻头实际上相当于正反安装的两把内孔车刀的组合刀具,只是这两把内孔车刀的主切削刃高于工件中心(因为有钻心而形成横刃的缘故,钻心半径为)。(1)基面和切削平面在分析麻花钻的几何角度时,首先必须弄清楚钻头的基面和切削平面。①基面:切削刃上任一点的基面,是通过该点,且垂直于该点切削速度方向的平面,如图7-35a所示。在钻削时,如果忽略进给运动,钻头就只有圆周运动,主切削刃上每一点都绕钻头轴线做圆周运动,它的速度方向就是该点所在圆的切线方向,如图7-35b中A点的切削速度垂直于A点的半径方向,B点的切削速度垂直于B点的半径方向。不难看出,切削刃上任一点的基面就是通过该点并包含钻头轴线的平面。由于切削刃上各点的切削速度方向不同,所以切削刃上各点的基面也就不同。②切削平面:切削刃上任一点的切削平面是包含该点切削速度方向,而又切于该点加工表面的平面(图7-35a所示为钻头外缘刀尖A点的基面和切削平面)。切削刃上各点的切削平面与基面在空间相互垂直,并且其位置是变化的。(2)主切削刃的几何角度,如图7-36所示①端面刃倾角为方便起见,钻头的刃倾角通常在端平面内表示。钻头主切削刃上某点的端面刃倾角是主切削刃在端平面的投影与该点基面之间的夹角。如图7-36所示,其值总是负的。且主切削刃上各点的端面刃倾角是变化的,愈靠近钻头中心端面刃倾角的绝对值愈大(见图7-36b)。②主偏角麻花钻主切削刃上某点的主偏角是该点基面上主切削刃的投影与钻头进给方向之间的夹角。由于主切削刃上各点的基面不同,各点的主偏角也随之改变。主切削刃上各点的主偏角是变化的,外缘处大,钻心处小。③前角麻花钻的前角是正交平面内前刀面与基面间的夹角。由于主切削刃上各点的基面不同,所以主切削刃上各点的前角也是变化的,如图7-36所示。前角的值从外缘到钻心附近大约由+30°减小到-30°,其切削条件很差。④后角切削刃上任一点的后角,是该点的切削平面与后刀面之间的夹角。钻头后角不在主剖面内度量,而是在假定工作平面(进给剖面)内度量(见图7-36a)。在钻削过程中,实际起作用的是这个后角,同时测量也方便。钻头的后角是刃磨得到的,刃磨时要注意使其外缘处磨得小些(约8°~10°),靠近钻心处要磨得大些(约20°~30°)。这样刃磨的原因,是可以使后角与主切削刃前角的变化相适应,使各点的楔角大致相等,从而达到其锋利程度、强度、耐用度相对平衡;其次能弥补由于钻头的轴向进给运动而使刀刃上各点实际工作后角减少一个该点的合成速度角μ(见图7-36中f-f剖面)所产生的影响;此外还能改变横刃处的切削条件。(3)横刃的几何角度如图7-37所示①横刃前角由于横刃的基面位于刀具的实体内,故横刃前角为负值(约-45°~-60°),所以钻削时在横刃处发生严重的挤压而造成很大的轴向力。②横刃后角横刃后角≈90°-││,故≈30°~35°。③横刃主偏角=90°。④横刃刃倾角=0°。⑤横刃斜角Ψ横刃斜角是在钻头的端面投影中,横刃与主切削刃之间的夹角。它是刃磨钻头时自然形成的,锋角一定时,后角刃磨正确的标准麻花钻横刃斜角Ψ为47°~55°,而后角愈大则Ψ愈小,横刃的长度会增加。评论[支持者:0人,反对者:0人,中立者:0人]查看评论信息2009-5-410:51:14点击参与评论|引用|回复|帖子操作豹子头林冲等级:新手上路文章:49积分:581注册:2007年2月3日第2楼小大收录个性首页|博客|短信|好友|信息|搜索|邮箱3.其他结构的钻头(1)扁钻扁钻切削部分磨成一个扁平体,主切削刃磨出锋角、后角并形成横刃;副切削刃磨出后角与副偏角并控制钻孔直径。扁钻前角小,没有螺旋槽,排屑困难,但由于制造简单,成本低,在仪表和钟表工业中直径1mm以下的小孔加工上得到广泛应用。近年来,扁钻由于结构上有较大改进,加上上述优点,故在自动线和数控机床上加工直径35mm以上孔时,也使用扁钻。扁钻可做成整体式,如图7-38a所示;或装配式,如图7-38b所示。在数控机床和组合机床上钻、扩较大直径孔(d=25~125mm)时常用装配式扁钻。(2)硬质合金钻头加工硬脆材料如合金铸铁、玻璃、淬硬钢等难加工材料,必须使用硬质合金钻头。小直径硬质合金钻头都做成整体结构,除用于加工硬材料外,也适用加工非金属压层材料。直径大于6mm的硬质合金钻头都做成镶片式结构,如图7-39所示。其结构特点是刀片用YG8,刀体用9SiCr;钻心较粗,do=(0.25~0.3)d,导向部分缩短;加宽容屑槽;增大倒锥量;制成双螺旋角。用以增强钻体刚度,减少振动,便于排屑,防止刀片崩裂。(3)群钻基本型群钻切削部分结构如图7-40所示。其结构和几何参数有以下特点:①切削刃形成三尖七刃。该钻型将每条主切削刃磨成三段,即外直刃、圆弧刃和内直刃,两边则共有七刃(含横刃)。这种分段刃形结构使钻头各部分的几何参数可分别控制并趋于合理。同普通麻花钻相比,群钻外直刃前角增加较小;圆弧刃前角平均增10°;内直刃处平均增大25°;横刃处增大4°~6°。所以群钻的平均前角获得显著增加,从而使群钻刃口锋利,切削性能好。除原钻尖外,圆弧刃和外直刃的交点又形成新的钻尖,故群钻具有“三尖”。这种三尖结构显著增强了钻头的定心和导向性能。②横刃低、窄、尖。群钻中心尖高h=0.03do,横刃长度仅为修磨前的1/4~1/6。由于磨出月牙槽(圆弧刃后面),使已磨窄的横刃进一步变尖。这种低、窄、尖的横刃使轴向抗力显著降低,并增强了定心性能。③分屑结构。主切削刃的分段结构使切屑分段变窄。钻头直径较大时,可在外直刃一侧再磨出分屑槽,或在两侧磨出交错槽,充分改善切屑的卷曲、折断和排出效果。如上所述,基本型群钻的结构特点是:三尖七刃锐当先,月牙弧槽分两边,外刃再开分屑槽,横刃磨低窄又尖。(二)锪钻在已加工出的孔上加工圆柱形沉头孔,如图7-41a所示、锥形沉头孔(如图7-41b)和端面凸台(如图7-41c)时,都使用锪钻。如图7-45a所示的锪钻为平底锪钻,其圆周和端面上各有3~4个刀齿,在已加工好的孔内插入导柱,其作用为控制被锪孔与原有孔的同轴度误差。导柱一般做成可拆式,以便于锪钻的端面齿的制造与刃磨。锥面锪钻的钻尖角有60°、90°和120°三种。(三)铰刀铰刀一般由高速钢和硬质合金制造。铰刀的精度等级分为H7、H8、H9三级,其公差由铰刀专用公差确定,分别适用于铰削H7、H8、H9公差等级的孔。多数铰刀又分为A、B两种类型,A型为直槽铰刀,B型为螺旋槽铰刀。螺旋槽铰刀切削平稳,适用于加工断续表面。下面介绍机用硬质合金铰刀的设计要点。如图7-42为一般机用硬质合金铰刀的结构,它由工作部分、颈部和柄部组成。工作部分包括引导锥、切削部和校准部。为了使铰刀易于引入预制孔,在铰刀前端制出引导锥。校准部由圆柱部分和倒锥部分组成。圆柱部分用来校准孔的直径尺寸并提高孔的表面质量,以及在切削时增强导向作用;倒锥部分用来减小摩擦。铰刀的主要设计内容是确定工作部分的参数。1.铰刀直径及其公差的确定铰刀直径公差直接影响被加工孔的尺寸精度、铰刀制造成本和使用寿命。铰孔时,由于刀齿径向跳动以及铰削用量和切削液等因素会使孔径大于铰刀直径,称为铰孔“扩张”;而由于刀刃钝圆半径挤压孔壁,则会使孔产生恢复而缩小,称为铰孔“收缩”。一般“扩张”和“收缩”的因素同时存在,最后结果应由实验决定。经验表明:用高速钢铰刀铰孔一般发生扩张,用硬质合金铰刀铰孔一般发生收缩,铰削薄壁孔时,也常发生收缩。铰刀的公称直径等于孔的公称直径。铰刀的上下偏差则要考虑扩张量、收缩量,并留出必要的磨损公差。图7-43所示为铰刀直径及其公差。dω—工件直径;do—新铰刀直径;—工件孔公差;P—扩张量Pa—收缩量;G—铰刀制造公差;N—铰刀磨损公差若铰孔发生扩张现象,则设计及制造铰刀的最大、最小极限尺寸分别为:domax=dωmax-Pmax(6-1)domin=domax-G(6-2)若铰孔发生收缩现象,则设计及制造铰刀的最大、最小极限尺寸分别为:domax=dωmax+Pamin(6-3)domin=domax-G(6-4)国家标准规定:铰刀制造公差G=0.35()。根据一般经验数据,高速钢铰刀可取Pmax=0.15();硬质合金铰刀铰孔后的收缩量往往因工件材料不同而不同,故常取Pamin=0,或取Pamin=0.1()。Pmax及Pamin的可靠确定办法是由实验测定。2.铰刀的齿数及齿槽铰刀的齿数影响铰孔精度、表面粗糙度、容屑空间和刀齿强度。其值一般按铰刀直径和工件材料确定。铰刀直径较大时,可取较多齿数;加工韧性材料时,齿数应取少些;加工脆性材料时,齿数可取多些。为了便于测量铰刀直径,齿数应取偶数。在常用直径do=8~40mm范围内,一般取齿数=4~8个。铰刀刀齿沿圆周可以等齿距分布,也可以不等齿距分布。为了便于制造,铰刀一般按等齿距分布。如图7-44所示,铰刀的齿槽形状一般有直线齿背(图7-48a)、圆弧齿背(图7-48b)和折线齿背(图7-48c),硬质合金铰刀一般采用折线齿背。铰刀齿槽方向有直槽和螺旋槽两种,如图7-45所示。为了便于制造,常采用直槽。为改善排屑条件,提高铰孔质量,硬质合金铰刀常做成左螺旋槽,螺旋角取3°~5°。评论[支持者:0人,反对者:0人,中立者:0人]查看评论信息2009-5-411:06:20点击参与评论|引用|回复|帖子操作豹子头林冲等级:新手上路文章:49积分:581注册:2007年2月3日第3楼小大收录个性首页|博客|短信|好友|信息|搜索|邮箱3.铰刀的几何角度①主偏角加工钢等韧性材料一般取=15°;加工铸铁等脆性材料一般取=3°~5°
本文标题:孔加工常用工艺装备
链接地址:https://www.777doc.com/doc-3178057 .html