您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 历年江苏数学高考试题及答案2004-2015
12015年江苏省高考数学试卷一、填空题1.已知集合123A,,,245B,,,则集合AB中元素的个数为_______.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.3.设复数z满足234zi(i是虚数单位),则z的模为_______.4.根据如图所示的伪代码,可知输出的结果S为________.5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.已知向量21a,,2a1,,若98manbmnR,,则m-n的值为______.7.不等式224xx的解集为________.8.已知tan2,1tan7,则tan的值为_______.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为。10.在平面直角坐标系xOy中,以点)0,1(为圆心且与直线)(012Rmmymx相切的所有圆中,半径最大的圆的标准方程为。11.数列}{na满足11a,且11naann(*Nn),则数列}1{na的前10项和为。12.在平面直角坐标系xOy中,P为双曲线122yx右支上的一个动点。若点P到直线01yx的距离对c恒成立,则是实数c的最大值为。13.已知函数|ln|)(xxf,1,2|4|10,0)(2xxxxg,则方程1|)()(|xgxf实根的个数为。14.设向量)12,,2,1,0)(6cos6sin,6(coskkkkak,则1201)(kkkaa的值为。15.在ABCV中,已知2,3,60.ABACAo2(1)求BC的长;(2)求sin2C的值。16.如图,在直三棱柱111ABCABC中,已知1,ACBCBCCC.设1AB的中点为D,11.BCBCE求证:(1)11//DEAACC平面(2)11BCAB17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12ll,,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到12ll,的距离分别为5千米和40千米,点N到12ll,的距离分别为20千米和2.5千米,以12ll,所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数2ayxb(其中a,b为常数)模型.(I)求a,b的值;(II)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式ft,并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(本小题满分16分)如图,在平面直角坐标系xOy中,已知椭圆222210xyabab的离心率为22,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.已知函数),()(23Rbabaxxxf。3(1)试讨论)(xf的单调性;(2)若acb(实数c是a与无关的常数),当函数)(xf有三个不同的零点时,a的取值范围恰好是),23()23,1()3,(,求c的值。20.设1234,,,aaaa是各项为正数且公差为d(0)d的等差数列(1)证明:31242,2,2,2aaaa依次成等比数列(2)是否存在1,ad,使得2341234,,,aaaa依次成等比数列,并说明理由(3)是否存在1,ad及正整数,nk,使得351234,,,nnknknkaaaa依次成等比数列,说明理由附加题21、(选择题)本题包括A、B、C、D四小题,请选定其中两小题,并在相应的区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤。A、选修4-1:几何证明选讲(本小题满分10分)如图,在ABC中,ACAB,ABC的外接圆圆O的弦AE交BC于点D求证:ABDAEBB、选修4-2:矩阵与变换(本小题满分10分)已知Ryx,,向量11是矩阵01yxA的属性特征值2的一个特征向量,矩阵A以及它的另一个特征值。C.[选修4-4:坐标系与参数方程]已知圆C的极坐标方程为222sin()404,求圆C的半径.D.[选修4-5:不等式选讲]4解不等式|23|3xx22.如图,在四棱锥PABCD中,已知PA平面ABCD,且四边形ABCD为直角梯形,2ABCBAD,2,1PAADABBC(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成角最小时,求线段BQ的长23.已知集合*{1,2,3},{1,2,3,,}()nXYnnN,设{(,)|,,}nnSabaaaXbY整除b或除,令()fn表示集合nS所含元素个数.(1)写出(6)f的值;(2)当6n时,写出()fn的表达式,并用数学归纳法证明。5678910112014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合A={4,3,1,2},}3,2,1{B,则BA▲.2.已知复数2)i25(z(i为虚数单位),则z的实部为▲.3.右图是一个算法流程图,则输出的n的值是▲.4.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲.5.已知函数xycos与)2sin(xy(0≤),它们的图象有一个横坐标为3的交点,则的值是▲.6.设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有▲株树木的底部周长小于100cm.7.在各项均为正数的等比数列}{na中,,12a4682aaa,则6a的值是▲.8.设甲、乙两个圆柱的底面分别为1S,2S,体积分别为1V,2V,若它们的侧面积相等,且4921SS,则21VV的值是▲.9.在平面直角坐标系xOy中,直线032yx被圆4)1()2(22yx截得的弦长为▲.开始0n1nn202n输出n结束(第3题)NY组距频率10080901101201300.0100.0150.0200.0250.030底部周长/cm(第6题)1210.已知函数,1)(2mxxxf若对于任意]1,[mmx,都有0)(xf成立,则实数m的取值范围是▲.11.在平面直角坐标系xOy中,若曲线xbaxy2(a,b为常数)过点)5,2(P,且该曲线在点P处的切线与直线0327yx平行,则ba的值是▲.12.如图,在平行四边形ABCD中,已知8AB,5AD,PDCP3,2BPAP,则ADAB的值是▲.13.已知)(xf是定义在R上且周期为3的函数,当)3,0[x时,|212|)(2xxxf.若函数axfy)(在区间]4,3[上有10个零点(互不相同),则实数a的取值范围是▲.14.若△ABC的内角满足CBAsin2sin2sin,则Ccos的最小值是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知),2(,55sin.(1)求)4sin(的值;(2)求)265cos(的值.16.(本小题满分14分)如图,在三棱锥ABCP中,D,E,F分别为棱ABACPC,,的中点.已知ACPA,,6PA.5,8DFBC求证:(1)直线//PA平面DEF;(2)平面BDE平面ABC.17.(本小题满分14分)如图,在平面直角坐标系xOy中,21,FF分别是椭圆ABDCP(第12题)(第16题)PDCEFBAF1F2OxyBCA(第17题)13)0(12322babyax的左、右焦点,顶点B的坐标为),0(b,连结2BF并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结CF1.(1)若点C的坐标为)31,34(,且22BF,求椭圆的方程;(2)若,1ABCF求椭圆离心率e的值.18.(本小题满分16分)如图,为了保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆.且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),34tanBCO.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数xxxfee)(,其中e是自然对数的底数.(1)证明:)(xf是R上的偶函数;(2)若关于x的不等式)(xmf≤1emx在),0(上恒成立,求实数m的取值范围;(3)已知正数a满足:存在),1[0x,使得)3()(0300xxaxf成立.试比较1ea与1ea的大小,并证明你的结论.20.(本小题满分16分)设数列}{na的前n项和为nS.若对任意正整数n,总存在正整数m,使得mnaS,则称}{na是“H数列”.(1)若数列}{na的前n项和nnS2(nN),证明:}{na是“H数列”;(2)设}{na是等差数列,其首项11a,公差0d.若}{na是“H数列”,求d的值;(3)证明:对任意的等差数列}{na,总存在两个“H数列”}{nb和}{nc,使得nnncba(nN)成立.170m60m东北OABMC(第18题)14参考答案15.(1)∵α∈(,π),=∴=∴=+=(2)=12=,=2==+=+()=16.(1)∵D,E,分别为PC,AC,的中点∴DE∥PA又∵DE平面PAC,PA平面PAC∴直线PA∥平面DEF(2)∵E,F分别为棱AC,AB的中点,且BC=8,由中位线知EF=4∵D,E,分别为PC,AC,的中点,且PA=6,由中位线知DE=3,又∵DF=5∴DF²=EF²+DE²=25,∴DE⊥EF,又∵DE∥PA,∴PA⊥EF,又∵PA⊥AC,又∵ACEF=E,AC平面ABC,EF平面ABC,∴PA⊥平面ABC,∴DE⊥平面ABC,∵DE平面BDE,∴平面BDE⊥平面ABC17.(1)∵BF2=,将点C(,)代入椭圆22221(0)xyabab,∴221611(0)99abab,且c²+b²=a²∴a=,b=1,∴椭圆方程为2212xy(2)直线BA方程为y=x+b,与椭圆22221(0)xyabab联立得x²x=0.∴点A(,),∴点C(,),F1()15直线CF1斜率k=,又∵F1C⊥AB,∴·=∴=1,∴e=18.(1)过点B作BE⊥OC于点E,过点A作AD⊥BE于点F。∵tan∠BCO=,设BC=5x,CE=3x,BE=4x,∴OE=,AF=170,,EF=AO=60,BF=4x60又∵AB⊥BC,且∠BAF+∠ABF=90°,∠CBE+∠BOC=90°,∴∠ABF+∠CBE=90°,∴∠CBE+∠BAF=90°,∴tan∠BAF===,∴x=30,BC=5x=150m∴新桥BC的长为150m。(2)以OC方向为x轴,OA为y轴建立直角坐标系。设点M(0,m),点A(0,60),B(80,120),C(170,0)直线BC方程为y=(x),即4x+3y∴半径R=,又因为古桥两
本文标题:历年江苏数学高考试题及答案2004-2015
链接地址:https://www.777doc.com/doc-3190752 .html