您好,欢迎访问三七文档
泗阳县实验初级中学初中数学八年级下册一元二次方程的解法配方法2(第3课时)知识回顾1.什么是配方法?我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法(solvingbycompletingthesquare)用配方法解一元二次方程的方法的助手:如果x2=a,那么x=x就是a的平方根.a2.什么是平方根?3.什么是完全平方式?式子a2±2ab+b2叫完全平方式,且a2±2ab+b2=(a±b)2.知识回顾4.用配方法解下列方程:(1)x2-6x-16=0(2)x2+3x-2=0想一想:请你思考方程x2-x+1=0与方程2x2-5x+2=0有什么关系?25后一个方程中的二次项系数变为1,即方程两边都除以2就得到前一个方程,这样就转化为学过的方程的形式,用配方法即可求出方程的解如何用配方法解方程2x2-5x+2=0呢?试一试用配方法解方程2x2-5x+2=0169452x4345x,x2=2解:两边都除以2,得01252xx移项,得1252xx配方,得16251452522xx开方,得即21221xx∴系数化为1移项配方开方定解典型例题2.用配方法解方程-3x2+4x+1=0分析:对于二次项系数是负数的一元二次方程,用配方法解时,为了便于配方,可把二次项系数化为1,再求解解:两边都除以-3,得031342xx移项,得31342xx配方,得22232313234xx即97322x开方,得3732x∴3732373221xx系数化为1移项配方开方定解1.对于二次项系数不为1的一元二次方程,用配方法求解时首先要怎样做?概括总结=首先要把二次项系数化为12.用配方法解一元二次方程的一般步骤:(1)系数化为1(2)移项(3)配方(4)开方(5)求解(6)定根概念巩固用配方法解下列方程,配方错误的是()2746532910A.x2+2x-99=0化为(x+1)2=100B.t2-7t-4=0化为(t-)2=C.x2+8x+9=0化为(x+4)2=25D.3x2-4x-2=0化为(x-)2=C典型例题例解下列方程(1)4x2-12x-1=0(2)2x2-4x+5=0(3)3-7x=-2x2解:(1)系数化为1,得04132xx4132xx494123322xx21023x移项,得配方,得开方,得410232x即210232102321xx∴典型例题(2)2x2-4x+5=0(3)3-7x=-2x2例解下列方程(2)解系数化为1,得02522xx125122xx261x移项、配方,得2312x即开方,得261,26121xx∴(3)3-7x=-2x2例解下列方程典型例题(3)解系数化为1,得023272xx164923472722xx4547x移项、配方,得1625472x即开方,得21,321xx∴说明:对于二次项系数不为1的一元二次方程化为(x+h)2=k的形式后,如果k是非负数,即k≥0,那么就可以用直接开平方法求出方程的解;如果k<0,那么方程就没有实数解。想一想一个小球竖直上抛的过程中,它离上抛点的距离h(m)与抛出后小球运动的时间t(s)有如下关系:h=24t-5t2经过多少时间后,小球在上抛点的距离是16m?练一练(3)2x2+3x=0(4)3x2-1=6x(5)-2x2+19x=20(6)-2x2-x-1=01解下列方程(1)2x2-8x+1=0(2)21x2+2x-1=0试一试2.用配方法求2x2-7x+2的最小值3.用配方法证明-10x2+7x-4的值恒小于0归纳总结1、解二次项系数不为1的一元二次方程的方法是什么?系数化1,移项,配方,变形,开方,求解,定解2、用配方法解形如ax2+bx+c=0一元二次方程的一般步骤是什么?
本文标题:配方3
链接地址:https://www.777doc.com/doc-3216137 .html