您好,欢迎访问三七文档
现行供热系统的运行现状概述与节能改造的可行性报告甘肃北方恒升水暖设备有限公司2015年4月1目录第一章概论………………………………………………………………第二章现行供热系统的弊端和节能论述……………………………一、电能浪费的麻木性、严重性和普遍性………………………二、根除水力失调是供热系统节能运行的首要条件……………三、提高供回水温差是节电的重要途径…………………………四、正确选择和安装循环水泵是节电的当务之急………………五、供热系统热源的节电节能措施………………………………六、热力站的节电措施……………………………………………七、供热系统与热网设计中的节电措施………………………第三章实例分析建筑物热耗和水力计算对循环泵选型的弊端…一、热耗计算的弊端………………………………………………二、水力计算的弊端………………………………………………第四章节能改造的几种方案………………………………………第五章项目主要经济指标与社会效益……………………………一、经济效益………………………………………………………二、社会效益………………………………………………………第六章节能改造业绩………………………………………………2第一章:概论据统计:我国建筑能耗约占总能耗的1/3,供热空调能耗约占建筑能耗的1/3。而我国目前的供热系统能效只有30%,若供热系统的理想能效为70%(其中热源效率80%,热网热损失8%,基本消除冷热不均),尚有40%的节能空间,潜力是很大的。但节能的前提,必须满足居民的舒适性要求。供暖室温过低,违背“以人为本”的基本原则;室温过高,不符合节约型社会的建设。为此,国务院今年《关于加强节能工作的决定》(国发[2006]28号)对公共建筑的室温给于明确规定:冬天不高于20℃;夏天不低于26℃。供热系统设计、运行的最终目标,应该是在满足人们舒适性要求的同时最大限度地节能。第二章:现行供热系统的弊端和节能论述对于每一个供热企业来说,要想生存、要想发展、都必须充分重视供热质量、经营管理、收费和经济运行等各个方面的问题,而各个方面的问题又都是有机地连在一起的,都是互相关联、缺一不可的,忽视了哪一方面都会给企业的经济效益和社会效益带来不良的后果。有些问题(如收费难的问题、用户冷热不均的问题)大家都认识到了,但由于种种原因一直困扰着供热企业,很难解决。还有一些问题在很大程度上影响着供热企业的供热质量、成本,从而影响着供热企业的经济效益和社会效益,但由于认识不清或被一些不合理的传统做法和习惯势力左右着,已成了“司空见惯”的状态,如供热系统的电耗过大,电能浪费严重的问题就是这样一个大问题。一、电能浪费的麻木性、严重性和普遍性供热企业是电耗大户,各种水泵、风机、照明都用电。如果设备选型不当,系统设计不合理,很容易造成电能的大量浪费。一些先进的供热企业换热站循环水泵每平方米面积的电耗在1.5度左右。但许多企业却超过了先进企业的3~4倍,电能浪费非常严重。这样的供热系统很普遍,甚至一些相当大的供热企业也是如此。经多方调查、研究可知,造成这种局面有以下几个原因:1、宁大勿小的设计习惯造成电能浪费一些设计人员墨守成规或生搬硬套,不加分析、不加研究地始终按习惯做法搞设计。同时还存在着宁大勿小的心理,因为怕担责任,总是把用电设备选得很大,而不考虑是否会造成能源浪费(如多台泵并联或水泵扬程偏高,脱离实际需要等问题)。2、不合理的选型造成的电能浪费还有一些设计院人员或供热企业的工程技术人员,对一些基本理论认识不清,研究不够,往往造成了错误设计、错误选型,使供热系统或用电设备白白浪费了宝贵的电能(如用楼房3的高度选择循环水泵扬程的问题)。3、不合理的技改措施造成的电能浪费一些企业的工程技术人员在供热系统运行过程中出现技术问题而影响供热质量时,不做认真的分析研究,找出问题的主要原因,抓住主要矛盾,而是凭经验、凭感觉采取了更换用电设备或盲目增加用电设备的方法。虽然使问题有了一定程度的改善(有时反而加大了问题的严重性),却进一步浪费了大量的电能(如热网水力失调,不去调网,却增加循环水泵台数或更换大泵)。二、根除水力失调是供热系统节能运行的首要条件所谓水力失调,就是管网各处实际流量与所需不一致。任何一个供热系统都不可能通过对管网、热力站和热用户等系统的设计、管网的布置、水力计算、管径、管件及设备的选型等,彻底解决运行时的水力平衡问题。任何一个供热系统都必须在系统运行时进行认真地调节,才有可能逐步接近水力平衡。如果调节水力平衡的设备选择不当,使用不当,调节的手段不先进,不合格,甚至不进行运行调节,供热系统就一定会存在不同程度的水力失调问题。从而造成部分热用户室温过高而浪费了热能,部分用户室温不达标,影响了供热质量。而此时,许多供热部门往往又错误的采用更换循环水泵,加大循环水流量等办法解决。虽然使水力工况在一定程度上有所改善,水力失调状况有所减轻,但由此却带来了电能的大量浪费,使供热企业的运行成本大大提高,同时使其它的节电措施无法实施。应该从根本上消除热网的水利失调,才能确保用户的供热质量。但以前消除水利失调的方法——人工调节关断阀、调节阀或平衡阀的方法,不但给运行调节人员带来相当大的工作量,而且根本无法使管网的水力失调得到彻底改善。采用自动控制的方法又大大提高了热网建设资金的投入。目前最好的办法,是最近几年来已开始普及的,在每个热用户的入口安装恒流量调节阀或自力式流量控制阀的方法。只要按每个热用户需要的流量,一次性调节好,就可保证全网的水力平衡。它不但可保证流入每个热用户的循环水量与设计或实际需要一致,而且还会自动消除热网的剩余压头,保证热网有良好的水力工况。目前恒流量调节阀是自力式流量控制阀中的佼佼者,它不但调节性能良好,而且可带电动执行器,实现远程自动控制。供热系统只有在根除了水力失调后,才有可能实现下面一些更有力的节电措施。三、提高供回水温差是节电的重要途径根据热量计算公式:Q=G×C×(Tg-Th)可知,当供热系统向热用户提供相同的热量Q时,供回水温差△T=Tg-Th与循环水量G成反比例关系。即系统的供回水温差大,则循环水量就小,4水泵的电耗就会大大降低。从下面的一个例子,就可看出温差与电耗之间的关系。例如一个供热系统设计热负荷为7MW,一网供回水温差△T=30℃。经计算,其循环水量为200m3/h。外网管径为DN200。查表可知沿程阻力系数为170Pa/m。经水力计算,管网沿程总阻力损失为50m水柱,如果按此流量和扬程选水泵,即水泵功率为45KW。如果把供回水温差由△T=30℃提高到△T=60℃,其循环水量可下降到100m3/h,按外网管径DN200查表可知,沿程阻力系数为42Pa/m。同温差30℃时的阻力系数相比是:42:170=1:4。按此推算,此时管网沿程总阻力损失应为H=50m/4=12.5m。按流量100m3/h和扬程12.5米选泵,其水泵功率只有5.5Kw。由此发现一个规律:当供回水温差提高到原来的两倍时,循环水量也降至原来的二分之一,而管网的沿程阻力降至原来的四分之一,而水泵的功率要降至原来的八分之一。即:△T2=2△T1则G2=1/2G1H2=1/22G1N2=1/23N1由此可看出,提高供热系统的供回水温差,可大大降低运行电耗。同时由于阻力损失的大幅度降低,可以使有中继泵站的供热系统,取消了中继泵站,节省了建设投资和中继泵站的运行费用。目前,直供系统或间供系统的二级管网,也都存在着运行温差过小的问题。用户的室内采暖系统一般都按供回水温差25℃设计,但实际运行的温差都在20℃以下,有的甚至只有10℃左右。因此存在着大量电能浪费问题。二级管网和室内采暖系统的节能潜力也很大。四、正确选择和安装循环水泵是节电的当务之急在泵的选型与安装上,目前普遍存在着一些不合理的地方,许多时候不依照水力计算,而是死套所谓的“规定”,并层层加码或参照别人的设计、以前的设计,甚至在错误的理论指导下确定泵的型号。而工程设计人员和运行管理人员又都习以为常,浑然不觉。因此在水泵的问题上存在大量的电能浪费。主要问题有:1、泵扬程偏高、与实际需要相差太大循环水泵扬程过高既造成了电能浪费,有时还使泵在超流量工况下工作,使电机过载,不得不在关小水泵出口阀门的状况下工作,进一步造成了电能的浪费,可以使电耗超过实际需要的三倍以上。如某一种水泵流量为100m3/h,当扬程H=12.5m时,水泵功率N=5.5Kw;扬程H=20m时,N=11Kw;扬程H=32m时,N=15Kw;扬程H=42m时,N=22Kw。造成水泵扬程偏高的原因一般有两种:错误地把楼房高度加在循环水泵的扬程中一种是错误认识造成的。一些人错误地把采暖系统的楼房高度,作为选择循环水泵扬程5的依据。他们把循环水泵的作用和补水定压泵的作用混到了一起,不知道循环水泵的扬程只是用来克服采暖系统的循环阻力,而补水定压泵的扬程是维持采暖系统所需静水压强。循环水泵的扬程不应负担楼房的高度。这种错误在某些地方还普遍存在着,是供热理论和供热常识普及不够的结果。那些把热力站的循环水泵扬程定为32m甚至40m的就是这种情况。2、多台泵并联运行降低了水泵效率,大量浪费电能(1)应正确认识水泵并联运行工况由泵的并联工况可知,单台泵运行效率要高于多台泵并联运行。但目前许多设计者都习惯选择二开一备、三开一备,甚至多开一备的方式,有时不但达不到所需要流量,而且造成了电能的巨大浪费。合理的设计是在每种工况下都是单台泵运行。因此可根据运行的工况,在同一个热源或热力站中同时选择几种不同型号的水泵,或变速泵。(2)热源循环水泵的设计原则另外热源的循环水泵必须同时满足热网和热源的共同要求,不能根据锅炉的循环水量、一台炉配一台泵的多泵形式。这样几台泵并联运行后既不能满足锅炉的要求,也不能满足热网的要求。形成这种习惯的主要原因是:许多人错误地认为,水泵并联后的流量就是各泵铭牌流量之和。实际并联后的流量一定小于铭牌流量之和。它取决于并联特性曲线与管网特性曲线的交点。更可怕的运行是同型号的泵工频变频结合运行。五、供热系统热源的节电节能措施热源的节电节能除前面提到的循环水泵选型、安装的节电措施、以及提高热源供回水温差的节电措施外,围绕着锅炉的节电节能措施还有很多。如:提高锅炉的燃烧效率的各种措施,锅炉增加分层、分行、分段给煤的设备、防止锅炉水垢、烟垢的各种措施,锅炉鼓引风系统加装变频调速器等节电措施,这些都是大家比较熟悉的。这里主要介绍一个往往被许多人忽视,但又非常重要的问题。就是如何实现锅炉在额定循环水量下工作,既节约电能而又不影响系统总循环水量和供水温度的问题。每台热水锅炉在设计中都给定了额定循环水量和最高供回水温度。锅炉本体对循环水的总阻力损失就是在这个循环水量的情况下计算出来的。而整个供热系统的总循环水量是根据系统的供回水温差和供热负荷确定的。它往往大于几台锅炉额定循环水量之和。许多工程技术人员都忽略了这一点。在设计和运行中不采取任何措施,而是使锅炉的实际运行循环水量与外网总循环水量相等。这样就造成了每台锅炉的循环水量大于额定循环水量,使炉内水的阻力损失大大超6过锅炉说明书中的阻力损失。从前面第三条论述中得出的规律可知,锅炉的实际循环水量达到了额定循环水量2倍时,锅炉本体的水循环阻力就是额定阻力损失的4倍,而此时用于克服锅炉水循环阻力的电耗就会是额定电耗的8倍。多么严重的电能浪费问题。首站也同锅炉运行,不过没有锅炉运行情况恶劣。六、热力站的节电措施热力站的节电措施除了前面提到的循环水泵的选型与安装问题,和提高二网供回水温差的措施之外,还有以下几个措施可进一步节电。1、间供系统的热力站间供系统的换热站中,换热设备的选型也影响着二级网循环水泵的电耗。应尽量减小换热器的水循环阻力。经研究得出的结论是:板式换热器中水的流速应控制在0.2-0.5m/s。也就是在选取板式换热器时,使换热器的换热面积大一些,达到每平方米换热面积供450-700m2的建筑面积为最佳。一般规律是这两种系统的热力站规模越小,越省电。因为此时一级网的供回水温差大,循环水量小,供到每个热力站的电
本文标题:换热站节能改造技术
链接地址:https://www.777doc.com/doc-3216332 .html