您好,欢迎访问三七文档
---------------------------------------------------------------------------------------------------------------------------------------钟表上的追及问题例如:在3点和4点之间的哪个时刻,钟表的时针与分针:(1)重合;(2)成平角;(3)成直角。解析:分针旋转的速度快,时针旋转的速度慢,而旋转的方向却是一致的。因此上面这类问题也可看做追及问题。通常有以下两种解法:一.格数法钟表面的外周长被分为60个“分格”,时针1小时走5个分格,所以时针一分钟转112分格,分针一分钟转1个分格。因此可以利用时针与分针旋转的“分格”数来解决这个问题。解析(1)设3点x分时,时针与分针重合。则分针走x个分格,时针走x12个分格。因为在3点这一时刻,时针在分针前15分格处,所以当分针与时针在3点与4点之间重合时,分针比时针多走15个分格,于是得方程xx1215,解得x16411。所以3点16411分时,时针与分针重合。(2)设3点x分时,时针与分针成平角。因为在3点这一时刻,时针在分针前15分格处,而在3点到4点之间,时针与分针成一平角时,分针在时针前30分格处,此时分针比时针多走了45分格,于是得方程xx1245,解得x49111。所以3点49111分时,时针与分针成平角。(3)设3点x分时,时针与分针成直角。此时分针在时针前15分格处,所以在3点到4点之间,时针与分针成直角时,分针比时针多走了30分格,于是得方程xx1230,解得x32811。所以3点32811分时,时针与分针成直角。二.度数法对钟表而言,时针12小时旋转一圈,分针1小时旋转一圈,转过的角度都是360°,所以时针1分钟转过的角度是0.5°,分针1分钟转过的角度是6°。故也可以利用时针与分针转过的度数来解决这道题。解析(1)设3点x分时,时针与分针重合,则时针旋转的角度是0.5x°,分针旋转的角度是6x°。整3点时,时针与分针的夹角是90°,当两针重合时,分针比时针多转了90°,于是得方程60590xx.,解得x16411。(2)设3点x分时,时针与分针成平角。此时分针比时针多转了90°+180°=270°,于是得方程605270xx.,解得x49111。(3)设3点x分时,时针与分针成直角。此时分针比时针多转了9090180,于是得方程605180xx.,解得x32811。---------------------------------------------------------------------------------------------------------------------------------------练一练1.钟表上9点到10点之间,什么时刻时针与分针重合?2.钟表上5点到6点之间,什么时刻时针与分针互相垂直?3.钟表上3点到4点之间,什么时刻时针与分针成40°的角?4.钟表上2点到3点之间,什么时刻时针与分针成一直线?---------------------------------------------------------------------------------------------------------------------------------------练一练答案1.钟表上9点到10点之间,什么时刻时针与分针重合?2.钟表上5点到6点之间,什么时刻时针与分针互相垂直?3.钟表上3点到4点之间,什么时刻时针与分针成40°的角?4.钟表上2点到3点之间,什么时刻时针与分针成一直线?(参考答案:1.9点49111分;2.5点43711或5点101011分;3.3点9111分或3点23711分;4.2点43711分。)
本文标题:钟表上的追及问题
链接地址:https://www.777doc.com/doc-3226888 .html