您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 五年高考真题(数学理) 10.5二项分布与正态分布
世纪金榜圆您梦想更多精品资源请登录页(共8页)山东世纪金榜科教文化股份有限公司第五节二项分布与正态分布考点一条件概率与相互独立事件的概率1.(2015·新课标全国Ⅰ,4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312解析该同学通过测试的概率为p=0.6×0.6+C12×0.4×0.62=0.648.答案A2.(2014·新课标全国Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45解析由条件概率可得所求概率为0.60.75=0.8,故选A.答案A3.(2011·湖南,15)如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=________.(2)P(B|A)=________.解析圆的半径为1,正方形的边长为2,∴圆的面积为π,正方形面积为2,扇形面积为π4.故P(A)=2π,P(B|A)=P(A∩B)P(A)=12π2π=14.世纪金榜圆您梦想更多精品资源请登录页(共8页)山东世纪金榜科教文化股份有限公司答案(1)2π(2)144.(2014·陕西,19)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概率0.50.5作物市场价格(元/kg)610概率0.40.6(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.解(1)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,因为利润=产量×市场价格-成本,所以X所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800.P(X=4000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为X40002000800P0.30.50.2(2)设Ci表示事件“第i季利润不少于2000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000元的概率为世纪金榜圆您梦想更多精品资源请登录页(共8页)山东世纪金榜科教文化股份有限公司P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896.5.(2013·辽宁,19)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.解(1)设事件A=“张同学所取的3道题至少有1道乙类题”,则有A=“张同学所取的3道题都是甲类题”.因为P(A)=C36C310=16,所以P(A)=1-P(A)=56.(2)X所有的可能取值为0,1,2,3.P(X=0)=C02·350·252·15=4125;P(X=1)=C12·351·251·15+C02350·252·45=28125;P(X=2)=C22·352·250·15+C12351·251·45=57125;P(X=3)=C22·352·250·45=36125.所以X的分布列为:X0123P4125281255712536125世纪金榜圆您梦想更多精品资源请登录页(共8页)山东世纪金榜科教文化股份有限公司所以E(X)=0×4125+1×28125+2×57125+3×36125=2.6.(2012·山东,19)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X的分布列及数学期望E(X).解(1)记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D,由题意知P(B)=34,P(C)=P(D)=23,由于A=BCD+BCD+BCD,根据事件的独立性和互斥性得P(A)=P(BCD+BCD+BCD)=P(BCD)+P(BCD)+P(BCD)=P(B)P(C)P(D)+P(B)P(C)P(D)+P(B)P(C)P(D)=34×1-23×1-23+1-34×23×1-23+1-34×1-23×23=736.(2)根据题意,X的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性得P(X=0)=P(BCD)=[1-P(B)][1-P(C)][1-P(D)]=(1-34)×1-23×1-23=136,P(X=1)=P(BCD)=P(B)P(C)P(D)=34×1-23×1-23=112,P(X=2)=P(BCD+BCD)=P(BCD)+P(BCD)世纪金榜圆您梦想更多精品资源请登录页(共8页)山东世纪金榜科教文化股份有限公司=1-34×23×1-23+1-34×1-23×23=19,P(X=3)=P(BCD+BCD)=P(BCD)+P(BCD)=34×23×1-23+34×1-23×23=13,P(X=4)=P(BCD)=1-34×23×23=19,P(X=5)=P(BCD)=34×23×23=13.故X的分布列为X012345P13611219131913所以E(X)=0×136+1×112+2×19+3×13+4×19+5×13=4112.7.(2011·大纲全国,18)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.解设A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,X~B(100,0.2),即X服从二项分布,所以期望E(X)=100×0.2=20.考点二正态分布世纪金榜圆您梦想更多精品资源请登录页(共8页)山东世纪金榜科教文化股份有限公司1.(2015·湖南,7)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544.A.2386B.2718C.3413D.4772解析由X~N(0,1)知,P(-1<X≤1)=0.6826,∴P(0≤X≤1)=12×0.6826=0.3413,故S≈0.3413.∴落在阴影部分中点的个数x估计值为x10000=S1(古典概型),∴x=10000×0.3413=3413,故选C.答案C2.(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σξμ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%解析由题意,知P(3<ξ<6)=P(-6<ξ<6)-P(-3<ξ<3)2=95.44%-68.26%2=13.59%.答案B3.(2014·新课标全国Ⅰ,18)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:世纪金榜圆您梦想更多精品资源请登录页(共8页)山东世纪金榜科教文化股份有限公司(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.(ⅰ)利用该正态分布,求P(187.8Z212.2);(ⅱ)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σZμ+σ)=0.6826,P(μ-2σZμ+2σ)=0.9544.解(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x-=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)(ⅰ)由(1)知,Z~N(200,150),从而P(187.8Z212.2)=P(200-12.2Z200+12.2)=0.6826.(ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以E(X)=100×0.6826=68.26.4.(2013·湖北,20)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(1)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ-σX≤μ+σ)=0.6826,P(μ-2σX≤μ+2σ)=0.9544,P(μ-3σX≤μ+3σ)=0.9974.)(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客
本文标题:五年高考真题(数学理) 10.5二项分布与正态分布
链接地址:https://www.777doc.com/doc-3251317 .html