您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 9 2017年江苏省南京市、盐城市高考数学二模试卷(解析版)
第1页(共22页)2017年江苏省南京市、盐城市高考数学二模试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.函数f(x)=ln的定义域为.2.若复数z满足z(1﹣i)=2i(i是虚数单位),是z的共轭复数,则=.3.某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲、乙不在同一兴趣小组的概率为.4.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:不喜欢戏剧喜欢戏剧男性青年观众4010女性青年观众4060现要在所有参与调查的人中用分层抽样的方法抽取n个人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n的值为.5.根据如图所示的伪代码,输出S的值为.6.记公比为正数的等比数列{an}的前n项和为Sn.若a1=1,S4﹣5S2=0,则S5的值为.7.将函数f(x)=sinx的图象向右平移个单位后得到函数y=g(x)的图象,则函数y=f(x)+g(x)的最大值为.8.在平面直角坐标系xOy中,抛物线y2=6x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率k=﹣,则线段PF的长为.9.若sin(α﹣)=,α∈(0,),则cosα的值为.10.α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是(填上所有正确命题的序号).①若α∥β,m⊂α,则m∥β;②若m∥α,n⊂α,则m∥n;③若α⊥β,α∩β=n,m⊥n,则m⊥β;④若n⊥α,n⊥β,m⊥α,则m⊥β.11.在平面直角坐标系xOy中,直线l1:kx﹣y+2=0与直线l2:x+ky﹣2=0相交于点P,则当实数k变化时,点P到直线x﹣y﹣4=0的距离的最大值为.12.若函数f(x)=x2﹣mcosx+m2+3m﹣8有唯一零点,则满足条件的实数m组成的集合为.13.已知平面向量=(1,2),=(﹣2,2),则•的最小值为.14.已知函数f(x)=lnx+(e﹣a)x﹣b,其中e为自然对数的底数.若不等式f(x)≤0恒成立,则的最小值为.第2页(共22页)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.如图,在△ABC中,D为边BC上一点,AD=6,BD=3,DC=2.(1)若AD⊥BC,求∠BAC的大小;(2)若∠ABC=,求△ADC的面积.16.如图,四棱锥P﹣ABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.第3页(共22页)17.在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.(1)当a=90时,求纸盒侧面积的最大值;(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.18.如图,在平面直角坐标系xOy中,焦点在x轴上的椭圆C:+=1经过点(b,2e),其中e为椭圆C的离心率.过点T(1,0)作斜率为k(k>0)的直线l交椭圆C于A,B两点(A在x轴下方).(1)求椭圆C的标准方程;(2)过点O且平行于l的直线交椭圆C于点M,N,求的值;(3)记直线l与y轴的交点为P.若=,求直线l的斜率k.第4页(共22页)19.已知函数f(x)=ex﹣ax﹣1,其中e为自然对数的底数,a∈R.(1)若a=e,函数g(x)=(2﹣e)x.①求函数h(x)=f(x)﹣g(x)的单调区间;②若函数F(x)=的值域为R,求实数m的取值范围;(2)若存在实数x1,x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求证:e﹣1≤a≤e2﹣e.20.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1﹣,(n+2)cn=﹣,其中n∈N*.(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.第5页(共22页)数学附加题[选做题]在21、22、23、24四小题中只能选做2题,每小题0分,共计20分.解答应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲]21.如图,△ABC的顶点A,C在圆O上,B在圆外,线段AB与圆O交于点M.(1)若BC是圆O的切线,且AB=8,BC=4,求线段AM的长度;(2)若线段BC与圆O交于另一点N,且AB=2AC,求证:BN=2MN.[选修4-2:矩阵与变换]22.设a,b∈R.若直线l:ax+y﹣7=0在矩阵A=对应的变换作用下,得到的直线为l′:9x+y﹣91=0.求实数a,b的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l:(t为参数),与曲线C:(k为参数)交于A,B两点,求线段AB的长.[选修4-5:不等式选讲]24.已知a≠b,求证:a4+6a2b2+b4>4ab(a2+b2)[必做题]第25题、第26题,每题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.25.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC=,E,F分别是BC,A1C的中点.(1)求异面直线EF,AD所成角的余弦值;(2)点M在线段A1D上,=λ.若CM∥平面AEF,求实数λ的值.26.现有(n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:第6页(共22页)设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn.(1)求p2的值;(2)证明:pn>.第7页(共22页)2017年江苏省南京市、盐城市高考数学二模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.函数f(x)=ln的定义域为(﹣∞,1).【考点】函数的定义域及其求法.【分析】根据对数函数的性质得到关于x的不等式,解出即可.【解答】解:由题意得:>0,解得:x<1,故函数的定义域是:(﹣∞,1).2.若复数z满足z(1﹣i)=2i(i是虚数单位),是z的共轭复数,则=﹣1﹣i.【考点】复数代数形式的乘除运算.【分析】把已知等式变形,再由复数代数形式的乘除运算化简求得z,进一步求得.【解答】解:∵z(1﹣i)=2i,∴,∴.故答案为:﹣1﹣i.3.某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲、乙不在同一兴趣小组的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n=3×3=9,再求出甲、乙不在同一兴趣小组包含的基本事件个数m=3×2=6,由此能求出甲、乙不在同一兴趣小组的概率.【解答】解:∵某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,∴基本事件总数n=3×3=9,甲、乙不在同一兴趣小组包含的基本事件个数m=3×2=6,∴甲、乙不在同一兴趣小组的概率p=.故答案为:.4.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:不喜欢戏剧喜欢戏剧男性青年观众4010女性青年观众4060现要在所有参与调查的人中用分层抽样的方法抽取n个人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n的值为30.【考点】分层抽样方法.【分析】利用分层抽样的定义,建立方程,即可得出结论.【解答】解:由题意=,解得n=30,故答案为:30第8页(共22页)5.根据如图所示的伪代码,输出S的值为17.【考点】伪代码.【分析】模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=9时不满足条件I≤8,退出循环,输出S的值为17.【解答】解:模拟执行程序,可得S=1,I=1满足条件I≤8,S=2,I=3满足条件I≤8,S=5,I=5满足条件I≤8,S=10,I=7满足条件I≤8,S=17,I=9不满足条件I≤8,退出循环,输出S的值为17.故答案为17.6.记公比为正数的等比数列{an}的前n项和为Sn.若a1=1,S4﹣5S2=0,则S5的值为31.【考点】等比数列的前n项和.【分析】经分析等比数列为非常数列,设出等比数列的公比,有给出的条件列方程求出q的值,则S5的值可求.【解答】解:若等比数列的公比等于1,由a1=1,则S4=4,5S2=10,与题意不符.设等比数列的公比为q(q≠1),由a1=1,S4=5S2,得=5a1(1+q),解得q=±2.∵数列{an}的各项均为正数,∴q=2.则S5==31.故答案为:31.7.将函数f(x)=sinx的图象向右平移个单位后得到函数y=g(x)的图象,则函数y=f(x)+g(x)的最大值为.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用两角和差的三角公式化简f(x)+g(x)的解析式,再利用正弦函数的值域求得函数y=f(x)+g(x)的最大值.【解答】解:将函数f(x)=sinx的图象向右平移个单位后得到函数y=g(x)=sin(x﹣)的图象,则函数y=f(x)+g(x)=sinx+sin(x﹣)=sinx﹣cosx=sin(x﹣)的最大值为,故答案为:.第9页(共22页)8.在平面直角坐标系xOy中,抛物线y2=6x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率k=﹣,则线段PF的长为6.【考点】抛物线的简单性质.【分析】先根据抛物线方程求出焦点坐标和准线方程,根据直线AF的斜率得到AF方程,与准线方程联立,解出A点坐标,因为PA垂直准线l,所以P点与A点纵坐标相同,再代入抛物线方程求P点横坐标,利用抛物线的定义就可求出PF长.【解答】解:∵抛物线方程为y2=6x,∴焦点F(1.5,0),准线l方程为x=﹣1.5,∵直线AF的斜率为﹣,直线AF的方程为y=﹣(x﹣1.5),当x=﹣1.5时,y=3,由可得A点坐标为(﹣1.5,3)∵PA⊥l,A为垂足,∴P点纵坐标为3,代入抛物线方程,得P点坐标为(4.5,3),∴|PF|=|PA|=4.5﹣(﹣1.5)=6.故答案为6.9.若sin(α﹣)=,α∈(0,),则cosα的值为.【考点】三角函数的化简求值.【分析】根据α∈(0,),求解出α﹣∈(,),可得cos()=,构造思想,cosα=cos(α),利用两角和与差的公式打开,可得答案.【解答】解:∵α∈(0,),∴α﹣∈(,),sin(α﹣)=,∴cos()=,那么cosα=cos[(α)]=cos()cos()﹣sin()sin==故答案为:.10.α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是①④(填上所有正确命题的序号).①若α∥β,m⊂α,则m∥β;②若m∥α,n⊂α,则m∥n;③若α⊥β,α∩β=n,m⊥n,则m⊥β;④若n⊥α,n⊥β,m⊥α,则m⊥β.【考点】空间中直线与平面之间的位置关系.【分析】在①中,由面面平行的性质定理得m∥β;在②中,m∥n或m与n异面;在③中,m与β相交、平行或m⊂β;在④中,由线面垂直的判定定理得m⊥β.【解答】解:由α,β为两个不同的平面,m,n为两条不同的直线,知:在①中,若α∥β,m⊂α,则由面面平行的性质定理得m∥β,故①正确;在②中,若m∥α,n⊂α,则m∥n或m与n异面,故②错误;第10页(共22页)在③中,若α⊥β,α∩β=n,m⊥n,则m与β相交、平行或m⊂β,故③错误;在④中,若n⊥α,n⊥β,m⊥α,则由线面垂直的判定定理得m⊥β,故④正确.故答案为:①④.11.在平面直角坐标系xOy中,直线l1:kx﹣y+2=0与直线l2:x+ky﹣2=0相交于点P,则当实数k变化时,点P到直线
本文标题:9 2017年江苏省南京市、盐城市高考数学二模试卷(解析版)
链接地址:https://www.777doc.com/doc-3254093 .html