您好,欢迎访问三七文档
第1页(共23页)《第4章直线与角》一、选择题(共15小题,每小题3分,满分45分)1.经过刨平的木板上的两点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,请说出理由是.2.如图,从甲地到乙地有四条道路,其中最短的路线是,最长的路线是.3.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6B.12C.15D.304.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3B.2C.3或5D.2或65.已知线段AB,画出它的中点C,再画出BC的中点D,再画出AD的中点E,再画出AE的中点F,那么AF等于AB的()A.B.C.D.6.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cmB.3cmC.7cm或3cmD.5cm第2页(共23页)7.如图,C,D,E将线段AB分成四部分,且AC:CD:DE:EB=2:3:4:5,M,P,Q,N分别是AC,CD,DE,BE的中点,若MN=a,求PQ的长.8.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?点P追上点R时在什么位置?9.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°10.学校、电影院、公园在平面图上分别用点A,B,C表示,电影院在学校的正东方向,公园在学校的南偏西35°方向,那么平面图上的∠BAC等于()A.115°B.35°C.125°D.55°第3页(共23页)11.中午闹钟响了,正在午睡的小明睁眼一看闹钟(如图所示),这时分针与时针所成的角的度数是度.12.如图所示,OE平分∠AOB,OD平分∠BOC,∠AOB=90°,∠EOD=80°,则∠BOC的度数为.13.如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.14.一个角的补角是这个角的余角的4倍,那么这个角的大小是()A.60°B.75°C.90°D.45°15.如图,两块三角板的直角顶点O重合在一起,且OB平分∠COD,则∠AOD的度数()A.45°B.120°C.135°D.150°第4页(共23页)二、解答题16.如图,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON是直角,∠AOC=50°.(1)求∠AON的度数;(2)求∠DON的余角.17.平面内两两相交的8条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.16B.18C.29D.2818.归纳与猜想:(1)观察图填空:图①中有个角;图②中有个角;图③中有个角;(2)根据(1)题猜想:在一个角内引(n﹣2)条射线可组成几个角?第5页(共23页)19.如图.已知∠A0B=60°,OC是∠A0B内的一条射线,OD平分∠BOC,OE平分∠AOC.(1)求∠EOD的度数;(2)若其他条件不变,OC在∠AOB内部绕O点转动,则OD,OE的位置是否发生变化?(3)在(2)的条件下,∠EOD的大小是否发生变化?如果不变,请求出其度数;如果变化,请求出其度数的范围.第6页(共23页)《第4章直线与角》参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.经过刨平的木板上的两点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,请说出理由是过两点有且只有一条直线.【考点】直线的性质:两点确定一条直线.【分析】根据直线公理:经过两点有且只有一条直线,解题.【解答】解:在锯木料时,一般先在木板上画出两点,然后过这两点弹出一条墨线,这是因为过两点有且只有一条直线.故答案为:过两点有且只有一条直线.【点评】此题考查了直线的性质:两点确定一条直线,此题比较简单,但从中可以看出,数学来源于生活,又用于生活.2.如图,从甲地到乙地有四条道路,其中最短的路线是从甲经A到乙,最长的路线是从甲经D到乙.【考点】线段的性质:两点之间线段最短.【分析】考查最短,最长路径问题,结合图形,即可求解.第7页(共23页)【解答】解:由图可得,因为两点之间,线段最短,所以最短的路线为从甲经A到乙,而最长路线则为从甲经D到乙.【点评】能够看懂一些简单的图形,会结合图形进行求解.3.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6B.12C.15D.30【考点】直线、射线、线段.【分析】分别求出从北京出发的有5种车票,从石家庄出发的有4种车票,从郑州出发的有3种车票,从武汉出发的有2种车票,从长沙出发的有1种车票,即可得出答案.【解答】解:∵从北京出发的有5种车票,从石家庄出发的有4种车票,从郑州出发的有3种车票,从武汉出发的有2种车票,从长沙出发的有1种车票,∴一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制2×(5+4+3+2+1)=30种车票,故选D.【点评】本题考查了用数学知识解决实际问题的应用,主要考查学生的理解能力和计算能力.第8页(共23页)4.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3B.2C.3或5D.2或6【考点】两点间的距离;数轴.【专题】压轴题.【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.【点评】在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.第9页(共23页)5.已知线段AB,画出它的中点C,再画出BC的中点D,再画出AD的中点E,再画出AE的中点F,那么AF等于AB的()A.B.C.D.【考点】比较线段的长短.【分析】根据题意AF=AE=AD,那么只需求出AD、AB的关系即可;因为AD=AB﹣BD,而BD=BC=AB,由此求得AF、AB的比例关系.【解答】解:由题意可作出下图:结合上图和题意可知:AF=AE=AD;而AD=AB﹣BD=AB﹣BC=AB﹣AB=AB,∴AF=AD=×AB=AB,故选D.【点评】本题考查了比较线段的长短,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.6.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cmB.3cmC.7cm或3cmD.5cm【考点】比较线段的长短.【专题】分类讨论.第10页(共23页)【分析】本题应考虑到A、B、C三点之间的位置关系的多种可能,即当点C在线段AB上时和当点C在线段AB的延长线上时.【解答】解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5.综合上述情况,线段MN的长度是5cm.故选D.【点评】首先要根据题意,考虑所有可能情况,画出正确图形.再根据中点的概念,进行线段的计算.7.如图,C,D,E将线段AB分成四部分,且AC:CD:DE:EB=2:3:4:5,M,P,Q,N分别是AC,CD,DE,BE的中点,若MN=a,求PQ的长.【考点】两点间的距离.【分析】根据线段的比例,可用x表示每条线段,根据中点的性质,可得AM,BN,根据线段的和差,可得关于x的方程,根据解方程,可得x的值,根据线段的和差,可得答案.【解答】解:由AC:CD:DE:EB=2:3:4:5,得AC=2x,CD=3x,DE=4x,EB=5x.由M是AC的中点,N是BE的中点,得AM=AC=x,NB=EB=.由线段的和差,得第11页(共23页)MN=MC+CD+DE+EN=x+3x+4x+x=.又MN=a,=a.解得x=.由P是CD的中点,Q是DE的中点,得PD=CD=,DQ=DE=2x.PQ=PD+DQ=+2x=PQ=×=a.【点评】本题考查了两点间的距离,利用线段的和差得出关于x的方程是解题关键.8.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4,点P表示的数6(1﹣t)(用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?点P追上点R时在什么位置?【考点】一元一次方程的应用;数轴;列代数式.【专题】计算题.第12页(共23页)【分析】(1)根据数轴表示数的方法得到B表示的数为6﹣10,P表示的数为6﹣6t;(2)点P运动t秒时追上点R,由于点P要多运动10个单位才能追上点R,则6t=10+4t,然后解方程得到t=5,此时4t=20,此时P点与R点都在﹣24表示的点的位置.【解答】解:(1)∵A表示的数为6,且AB=10,∴B表示的数为6﹣10=﹣4,∵PA=6t,∴P表示的数为6﹣6t=6(1﹣t);故答案为﹣4,6(1﹣t);(2)点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,所以4t=20,所以点P在数﹣24表示的点追上点R.答:点P运动5秒时追上点R,点P追上点R时在数﹣24表示的点.【点评】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.第13页(共23页)9.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°【考点】对顶角、邻补角;角平分线的定义.【专题】常规题型.【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:C.【点评】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.10.学校、电影院、公园在平面图上分别用点A,B,C表示,电影院在学校的正东方向,公园在学校的南偏西35°方向,那么平面图上的∠BAC等于()第14页(共23页)A.115°B.35°C.125°D.55°【考点】方向角.【分析】根据方位角的概念,正确画出方位图表示出方位角,即可求解.【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=125°.故选:C.【点评】本题考查了方向角.解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.11.中午闹钟响了,正在午睡的小明睁眼一看闹钟(如图所示),这时分针与时针所成的角的度数是135度.【考点】钟面角.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:时针与分针相距份,时分针与时针所成的角的度数30×=135°故答案为:135.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.第15页(共23页)12.如图所示,OE平分∠AOB,OD平分∠BOC,∠AOB=90°,∠E
本文标题:直线与角含答案
链接地址:https://www.777doc.com/doc-3254369 .html