您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 述职报告 > 四川省成都七中2010级高二数学下期理科试卷及答案
用心爱心专心成都七中2008~2009学年度下期高中二年级期中考试数学试卷(理科)考试时间:120分钟总分:150分(Ⅰ卷)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的答案填在后面的括号内)1、若三条直线交于一点,则它们最多可以确定的平面数为()A、1B、2C、3D、42、以下命题正确的为()A、有两个相邻的侧面是矩形的棱柱是直棱柱B、有一个侧面是矩形的棱柱是直棱柱C、底面是正多形的棱锥是正棱锥D、正棱锥各侧面与底面所成的二面角不一定都相等3、已知二面角—l—β的大小为45°,m,n为异面直线,且m,nβ,则m,n所成角的大小为()A、135°B、90°C、60°D、45°4、三棱锥的四个面中,直角三角形的个数最多为()A、1个B、4个C、3个D、2个5、用0到9这10个数字,可以组成的三位数的个数为()A、648B、720C、900D、8106、若一个三棱锥中的一条棱长为x,其余棱长为2,则x的取值范围是()A、(0,3)B、(0,6)C、(3,23)D、(0,23)7、37(2)xx的展开式的第3项的系数为()A、84B、21C、280D、358、在平行六面体ABCD—A1B1C1D1中,AB=1,AD=2,AA1=3BAD=60°,BAA1=DAA1=90°,则AC1的长为()A、25B、4C、5D、26用心爱心专心9、半径为1的球面上有A、B、C三点,其中A和B的球面距离、A和C的球面距离都是π2,B和C的球面距离是π3,则点B到平面AOC的距离为()A、23B、21C、1D、4π10.连接正方体ABCD-A1B1C1D1的8个顶点的直线中,异面直线有()A.840对B.210对C.174对D.192对11.已知正四面体S-ABC的侧面SAC内的动点M到点S距离与到底面ABC的距离相等,则动点M的轨迹是()A.线段B.抛物线的一部分C.双曲线的一部分D.椭圆的一部分12.将标号为1,2,…,9的9个球放入标号为1,2,…,9的9个盒子里,每个盒内放一个球,恰好4个球的标号与其所在盒子的标号不一致的放入方法种数为().A.126B.1134C.252D.2268二、填空题:(每小题4分,共16分)13、31021(2)xx的展开式中的常数项等于。14.从集合{P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复),每排中字母Q和数字0至少出现一个的不同排法种数是。(用数字作答).15、三棱锥A的一个侧面与三棱锥B的一个侧面是全等的三角形,将这两个三角形重合,所得新多面体的面数是。16.水平桌面上放置着一个容积为V的密闭长方体玻璃容器ABCD-A1B1C1D1,其中装有12V的水,给出下列操作与结论:①把容器一端慢慢提起,使容器的一条棱AD保持在桌面上,这个过程中,水的形状始终是柱体;②在①中的运动过程中,水面始终是矩形;③把容器提离桌面,随意转动,水面始终过长方体内一个定点;④在③中水与容器的接触面积始终不变。以上说法正确的是。(把所有正确命题的序号都填上)成都七中2008~2009学年度下期高中二年级用心爱心专心期中考试数学试卷(理科)考试时间:120分钟总分:150分命题人:张世永审题人:曹杨可(Ⅱ卷)一、选择题(每小题5分,共60分)涂机读卡二、填空题(每小题4分,共16分)13._______14.______15.________16.______________三、解答题:(本大题共6小题,共74分)17.(12分)连续7次射击,把每次命中与否都记录下来。(1)可能出现多少种结果?(2)恰好命中3次的结果有多少种?(3)命中3次,恰好有2次是连续的结果有多少种?18、(12分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,M,N分别是A1A,1BB的中点。(1)求直线D1N与平面11AABB所成角的大小;(2)求点N到平面1DMB的距离;(3)求直线CM与D1N所成角的正弦值。19.(12分)3位男士甲、乙、丙和3位女士A、B、C在一起合影留念,在下用心爱心专心面各种条件下各有多少种不同的排法?(1)排成一排,甲不在两端;(2)排成一排,甲不在左端,A不在右端;(3)现在男士丁和女士D加入合影,若他们是4对夫妻,排成前后两排,使每对夫妻前后成对;(4)排成一排,使甲、乙都和A不相邻。20.(12分)如图,在四棱锥S-ABCD中,SA底面ABCD,BAD=ABC=90°,BC=3SA=3AB=3AD.(1)求CD和SB所成角大小;(2)在BC边上是否存在一点G,使二面角S-DG-A的大小为arctan2?若存在,请指出G点的位置;若不存在,必须说明理由。用心爱心专心21.(12分)如图,正四面体A—BCD的棱长为22,M为AB的中点,N在CD上,且2.CNND(1)求MN和BD所成角的大小;(2)求BN与DM所成角的大小;(3)求该四面体的外接球的体积。B用心爱心专心22.(14分)如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,C=90°,侧棱与底面所成的角为(0°<<90°),点B1在底面上的射影D落在BC上。(1)求证:AC平面BB1C1C;(2)当为何值时,AB1BC1,且使点D恰为BC中点?(3)当=arccos13,且AC=BC=AA1时,求二面角C1-AB-C的大小。成都七中2008~2009学年度下期高中二年级期中考试数学试卷(理科)答案一、选择题:(本大题共12小题,每小题5分,共60分)1.C2.A3.D4.B5.C6.D7.A8.B9.A10.C11.D12.B二、填空题(每小题4分,共16分)13.336014.388815.4或5或616.①②③④三、解答题:(本大题共6小题,共74分)17.(每小题4分)解:(1)方法一:每次射击都有2种结果,共2×2×2×2×2×2×2=128种。方法二:07C17C27C37C47C57C67C77C=27=128种;(2)37C35;(3)方法一:连续2次命中打捆,然后用命中插空没有命中的5个空中,则25A20方法二:331755CCC20。18.(每小题4分)解:(1)连结1AN,由11DA平面11AABB,知11DNA为直线D1N与平面11AABB所成角。A1D1=A1B1=2,B1N=1A1N=5,D1N=3.111112sin,3ADDNADN即11DNA=2sin.3arc(2)连结MD1,MB,1,.BDNM设点N到平面1DMB的距离为h.MB=MD1=5,BD1=231MBDS=6又MNBS=1.1NDMBV=1DNMBV131MBDSh=13MNBSA1D1h=6.3.(3)以D为原点,DA、DC、1DD分别为x轴,y轴、z轴建立空间直角坐标,则D1(0,0,2),M(2,0,1),C(0,2,0),N(2,2,1)。CM=(2,-2,1),1DN=(2,2,-1)。设直线CM与1DN所成角大小为。用心爱心专心1coscos,CMDN=19,45sin9。19.(每小题3分)解:(1)1545AA480种;(2)6546542AAA504种;(3)先把4对夫妻看成4捆排成一排,再每对夫妻前后交换,则4442A384种;(4)甲、乙、A都不相邻有3334AA种,甲、乙打捆与A不相邻有322342AAA种。∴3334AA+322342AAA=288种。20.(每小题6分)解:设SA=AB=AD=1,则BC=3。以A为原点,AB、AD、AS分别为x轴,y轴、z轴建立空间直角坐标,则A(0,0,0),B(1,0,0),D(0,1,0),S(0,0,1),C(1,3,0)。(1)(1,0,1),SB(1,2,0)DC。cos,SBDC=152=1010。CD和SB所成角的大小为10arccos.10(2)假设在BC边上是存在一点G(1,a,0),使二面角S-DG-A的大小为arctan2。设(,,),nxyz且n平面SDG。(0,1,1),DS(1,1,0)DGa。0,DSnyz(1)0DGnxay,,yz(1)xay,取1,y则(1,1,1),na又SA底面ABCD,则(0,0,1),AS设二面角S-DG-A的大小为,则1tan2,cos3211cos3(1)2a,从而0a或2.a当G点与B点重合或BG:GC=2:1时,二面角S-DG-A的大小为arctan2。21.(每小题4分)解:把正四面体A—BCD放入如图正方体中,则正方体棱长为2。以A为原点建,则A(0,0,0,),B(2,2,0)M(1,1,0),D(2,0,2),42N(,,2).33(1)11(,,2),33MN(0,2,2)BD。cos,MNBD=38197用心爱心专心MN和BD所成角的大小为738arccos.19。(2)24(,,2),33BN(1,1,2)MD。cos,BNMD=216BN与DM所成角大小为14arccos.2(3)该正四面体的外接球就是正方体的外接球,正方体的对角线长为23,就是外接球的直径,∴外接球的半径为3,体积为43。22.((1)4分(2)5分(3)5分)解法1:(1)∵B1D平面ABC,AC平面ABC,∴B1DAC,又∵ACBC,BCB1D=D,∴AC平面BB1C1C。(2)∵AC平面BB1C1C,要使AB1BC1,由三垂线定理可知,只需B1CBC1,∴BB1C1C为菱形,此时BC=BB1。又∵B1DBC,要使点D为BC中点,只需B1C=B1B,即BB1C为正三角形,∴B1BC=60°。∵B1D平面ABC,且点D落在BC上,∴B1BC即为侧棱与底面所成的角。故当=60°时,AB1BC1,且使点D为BC的中点。(3)过C1作C1EBC,垂足为E,则C1E平面ABC,过E作EFAB,垂足是F,由三垂线定理得C1FAB,∴C1FE是所求二面角C1-AB-C的平面角。设AC=BC=AA1=a,在RtCC1E中,由1CCE==arccos13,得C1E=223a.在RtBEF中,EBF=45°,EF=22BE=223a,∴C1FE=45°,故所求的二面角C1-AB-C大小为45°。解法2:(1)同上,略.(2)要使AB1BC1,D是BC的中点,即AB1·BC1=0,,|BB1|=|1BC|。∵(AC+1CB)·1BC=0,|BC1|·|1BC|=0,∴|1BB|=|BC|,∴|1BB|=|BC|=|1BC|,故1BBC为正三角形,B1BC=60°。∵B1D平面ABC,且D落在BC上,∴B1BC即为侧棱与底面所成的角。故当=60°,AB1BC1,且D为BC的中点。(3)以C为原点,CA为x轴,CB为y轴,经过C点且垂直于平面ABC的直线为用心爱心专心z轴,建立空间直角坐标系,则A(a,0,0),B(0,a,0),C1(0,-3a,223a).平面ABC的法向量1n=(0,0,1),设平面ABC1的法向量2n=(x,y,z).由AB·2n=0及1BC·2n=0,得,-x+y=0,-43y+223z=0,∴2n=(22,22,1)∵cos<1,n2n>=22,故1n、2n所成的角为45°,即所求的二面角C1-AB-C大小为45°。用心爱心专心
本文标题:四川省成都七中2010级高二数学下期理科试卷及答案
链接地址:https://www.777doc.com/doc-3254916 .html