您好,欢迎访问三七文档
ONAPROPERTYOFPROBABILITYMATCHINGPRIORS:MATCHINGTHEALTERNATIVECOVERAGEPROBABILITIESRahulMukerjeeIndianInstituteofManagementPostBoxNo16757,Calcutta700027,Indiarmuk1@hotmail.comN.ReidDepartmentofStatisticsUniversityofTorontoToronto,CanadaM5S3G3reid@utstat.utoronto.caSummaryInfrequentistinferencebasedoncon dencesets,boththetruecoverageandtheprobabilityforacon dencesettoincludeanalternativevalueoftheparameterofinterestareimportant.Thusifprobabilitymatchingpriorsalsomatchsuchalternativecoverageprobabilitiesthereisperhapsastrongerjusti cationforcallingthemnoninformative.Con-sideringcontiguousalternatives,weobtaintherelevantnecessaryandsu cientconditions.Inparticular,withndenotingthesamplesize,itisseenthatprobabilitymatchingpriorsuptoo(n 1=2)alsomatchthealternativecoverageprobabilitiesuptothatorderwhilethisisnotnecessarilythecasewithprobabilitymatchingpriorsuptoo(n 1).Somekeywords:Contiguousalternative;Firstorder;Je reys’prior;Noninformativeprior;parametricorthogonality;Secondorder.1.Introduction1Inrecentyears,therehasbeenconsiderableinterestinthecharacterisationofpriorsensuring,undersuitableregularityconditions,approximatefrequentistvalidityofposteriorcrediblesets;seeReid(1995)andKass&Wasserman(1996)forreviews.Inparticular,priors ( )forwhichtherelationP f 1 (1 )1( ;X)g=1 +o(n r=2);(1:1)holdsforr=1or2andforeach (0 1),havereceivedmuchattention.Herenisthesamplesize, =( 1;:::; p)0isanunknownparametervector, 1istheone-dimensionalparameterofinterest,P isthefrequentistprobabilitymeasureunder ,and (1 )1( ;X)isthe(1 )thposteriorquantileof 1giventhedataX.Priorssatisfying(1.1)forr=1or2arecalled rst-orsecond-orderprobabilitymatchingpriorsrespectively.Forp=1,i.e.intheabsenceofnuisanceparameters,Welch&Peers(1963)characterisedJe reys’prioras rst-orderprobabilitymatchingandexploredmodelconditionsunderwhichitisalsosecond-orderprobabilitymatching.Thecorrespondingproblemsforp 2havebeeninvestigatedby,amongothers,Peers(1965),Tibshirani(1989),Nicolaou(1993)andMukerjee&Dey(1993).AsnotedbyTibshirani(1989),studiesofthiskindhelpingettingaccuratefrequentistcon dencesetsandde ningnoninformativepriors.Fromthefrequentistpointofview,however,theprobabilityforacon dencesettoincludeanalternativevalueoftheinterestparameterisasimportantasthatoftruecoverage(Lehmann,1986,Ch.3).Suchanalternativecoverageprobabilityindicateshowselectiveacon dencesetis,anditscomplementislinkedwiththepoweroftheassociatedtest.Weconsiderinthispaperhowfarapriorsatisfying(1.1)alsomatchesP f 1+ (I11=n)1=2 (1 )1( ;X)gwiththecorrespondingposteriorprobability,uptothesame2orderofapproximationandforeach and ,whereI11isthe(1;1)elementoftheinverseoftheperobservationexpectedinformationmatrixat andthescalar isfreefromn, andX.Ifapriorsatisfying(1.1)alsomatchesthealternativecoverageprobabilitiesintheabovesense,thenthereisastrongerjusti cationforcallingitnoninformativeinsofarasagreementwithafrequentistisconcerned.Afterpresentingthepreliminariesinx2,weobtainnecessaryandsu cientconditionsformatchingtrueandalternativecoverageprobabilities,uptothe rstandsecondordersofapproximation,inx3.Itisseenthat rst-orderprobabilitymatchingpriorsalsomatchalternativecoverageprobabilitiesuptothatorderwhilethatisnotnecessarilythecaseatthesecondorderofapproximation.Finally,someillustrativeexamples,includingonewherethepresentstudyhelpsinnarrowingdowntheclassofsecond-orderprobabilitymatchingpriors,arepresentedinx4.2.NotationandpreliminaryresultsLetfXig,i 1,beasequenceofindependentandidenticallydistributedpossiblyvector-valuedrandomvariableswithcommondensityf(x; ),wheretheparametervector =( 1;:::; p)0belongstoRporsomeopensubsetthereofand 1istheparameterofinterest.AlongthelinesofMukerjee&Dey(1993),weworkessentiallyundertheassumptionsofJohnson(1970)andalsoneedtheEdgeworthassumptionsofBickel&Ghosh(1990,p.1078).Allformalexpansionsfortheposterior,asusedhere,arevalidforsamplepointsinasetSwithP probability1+o(n 1)uniformlyovercompactsetsof .ThesetSmaybede nedfollowingBickel&Ghosh(1990,Section2).3Let^ =(^ 1;:::;^ p)0bethemaximumlikelihoodestimatorof basedonX=(X1;:::;Xn)0,‘( )=n 1nPi=1logf(Xi; )and,withDj @=@ j,letajr=fDjDr‘( )g =^ ;ajrs=fDjDrDs‘( )g =^ ;cjr= ajr;Vj=Djlogf(X1; );Vjr=DjDrlogf(X1; );Vjrs=DjDrDslogf(X1; );Ijr=E (VjVr);Lj;r;s=E (VjVrVs);Lj;rs=E (VjVrs);Ljrs=E (Vjrs):ThematrixC=(cjr)ispositivede niteoverS.LetC 1=(cjr)andkjr=cjr (cj1cr1=c11).Similarly,letI=(Ijr)betheperobservationFisherinformationmatrixat ,I 1=(Ijr), jr=Ij1Ir1=I11and jr=Ijr jr.ThequantitiesIjr,Ijr, jr, jr,Lj;r;s,etc.areallfunctionsof .Let haveapriordensity ( )whichispositiveandthricecontinuouslydi erentiableforall .Wede ne j( )=Dj ( ), jr( )=DjDr ( ),^ = (^ ),^ j= j(^ ),^ jr= jr(^ ).Similarly,let ( )=(I11)1=2, j( )=Dj ( ), jr( )=DjDr ( ),^ = (^ ),^ j= j(^ ),^ jr= jr(^ ).Asindicatedinx1,thequantity 1+ (I11=n)1=2,where doesnotinvolven, orX,willplayacrucialroleinthepresentwork.Tofacilitatethepresentation,weconsiderarelatedquantity =(c11) 1=2[n1=2f 1+ (I11=n)1=2 ^ 1g ^ ];(2:1)and,recallingthede nitionof ( ),notethat =(c11) 1=2fh1+ (n 1=2
本文标题:ON A PROPERTY OF PROBABILITY MATCHING PRIORS MATCH
链接地址:https://www.777doc.com/doc-3256276 .html