您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 进气口边界层控制种种
进气口边界层控制种种喷气飞机的进气口当然就是给发动机“喂”空气的,空气应该平顺地进入发动机,或者说,在发动机的正面,每一点上空气的流速、压力应该是一样的。但实际上,即使是“平顺”的所谓层流,即空气流动的方向是一致的,没有横七竖八的现象,由于空气是有粘性的(尽管很低),空气和物体表面的摩擦使接近表面的流速下降,而远离表面的“自由空气”的流速相对均匀。实际空气在接近物体表面时经常不是层流状态,而是涡流状态,流速、方向都是混乱的。下图来自NASA网站,比较好地定义了边界层。水平的箭头表示这一点空气的流速,箭头越长速度越快。可以看到,越接近物体表面,流速越低。层流(laminarflow)的流向至少还是一致地从左向右,但涡流(也叫湍流,turbulentflow)就可以打转转了。在理论上,物体表面这一点上的流速是零。从流速开始下降到物体表面这一段,在流体力学里称为边界层,或者附面层,都是一个意思。显然,如果发动机进气口的半径大大超过边界层的宽度(通常确实如此),那发动机的进气效率就要受到影响,最坏的情况就是压缩机失速,也就是说,压缩机叶片“吃”不到空气,好像轮子打滑一样。更坏的情况是压缩机喘振,也就是压缩机“吃”不到空气,拼命“喘气”,导致大量空气涌入,然后“呛住”,再缓一口气,然后又“吃”不到空气,这样反复。这可能导致叶片损坏或者发动机熄火。在低速飞行时,边界层较薄,问题不是很严重。速度越高,边界层问题越大,所以进入超音速飞行以后,边界层控制变成飞机-发动机一体化设计的一个大问题。除非取消进气道,把发动机压缩机直接暴露在“干净”空气中,边界层不可能完全消除,进气道壁也会形成边界层。但这是专门设计的,比较好控制,通常不是个问题。边界层问题的最大来源是机体。机体外形是为全机气动而设计的,不能太迁就发动机的进气道边界层控制。最简单的边界层控制就是使发动机进气口远离机体。民航客机的翼下发动机吊挂在机翼下,就没有边界层控制问题。早期机头进气的喷气战斗机也没有这个问题,事实上,这是早期喷气战斗机广泛采用机头进气的一个重要原因。吊挂在自由空气中的翼下发动机没有边界层控制的问题翼下吊挂发动机的Me262也没有这个问题机头进气的喷气战斗机同样没有边界层控制问题,至少在速度较低的时候但即使在喷气战斗机的早期,边界层控制问题已经得到重视。早期喷气发动机“脾气”很大,弄不好就要失速、熄火,所以一切能够帮助发动机稳定工作的措施都不能忽视。洛克希德F-80是美国第一种具有实战能力的喷气战斗机,两颌进气道就采用了边界层分离板。洛克希德F-80的进气口边界层分离板,兜进边界层分离板内侧的呆滞空气从后上方的泄气口排放出去F-22也是一样当然,边界层不是光分离出去就解决问题的,这部分呆滞空气还是要有出路,否则积聚在这个死区里,分离板很快就失去作用了。如何把呆滞气流泄放出去就成为各种边界层控制机制的特色。下面是几种典型的做法。F-22进气口后上方的菱形阴影部分其实就是加了格栅的边界层泄气口诺思罗普F-89就直接把进气口悬挂在机体之外,边界层呆滞气流由进气口内侧和机体之间的间隙自然泄放出去麦克唐纳F-101和诺思罗普F-89的做法相似,但反其道而行之,不是把进气口悬挂在机体之外,而是用一块板把进气口和机体隔离开来麦道F-4“鬼怪”式上更加明显中国的歼-8II也是同样处理歼-10把两侧进气口转移到机腹,其他方面还是一样的F-16进气口两侧的泄流道更加清楚一点麦道F-18C也用分离板但泄气道通向机翼上表面,出口在翼根扰流片的旁边,利用上表面的低压提高泄气效率,但这样做带来一定的升力损失,因为这相当于机翼下表面到上表面的一个“短路”F-18E取消了通向上机翼上表面的泄气口,而是把呆滞气流横向泄放到机翼下表面,这样泄放的效率低,但是机翼升力损失小所以F-18E/F的翼根上表面不再开泄气口除了用分离板分离,另一个办法就是吸气,把边界层吸除了,同样可以达到使进气口流速分布均匀的目的。这最早是在没有办法用分离板的机头进气情况,如苏联为预研米格-25而研制的米格E-152研究机。诺思罗普YF-23也采用了吸除法分离边界层。米格E-152的这张图片不清楚,但在圆锥底部周围,有一圈小孔,用于吸除边界层。尽管这是机头进气,但速度太快了,中心调解锥形成的边界层开始成为一个问题,一定要有所处置诺思罗普YF-23的进气口没有常见的分离板,而是在天花板上开了很多小孔,用于吸除边界层。这张图能够看到翼根上表面泄气口(进气口上方鼓包处)。这样阻力最小,而且利用上表面形成升力的低压自然吸除边界层,速度越快,边界层问题越显著,吸除的效果也越好,构思很巧妙边界层分离的另一个办法是不分离,而是用一个鼓包把边界层“剖”开,导向进气口两侧泄放。现在很红火的DSI就是这个意思。但这不是现在的发明,早在喷气时代的开始,英国德哈维兰“吸血鬼”战斗机就是用的这个。“吸血鬼”的设计没有现在的DSI那么优美,但意思是一样的,把贴着机身的边界层“剖”开,导向进气口两侧。由于早期流体力学设计手段的局限,对于横向“溢出”到进气口的边界层部分没有很好的控制手段F-35的DSI就要先进多了,对横向“溢出”气流也有很好的控制这个计算流体力学的示意图显示了气流分布情况,容易看到,边界层大部分沿鼓包的两侧被分离掉了,只有很少部分进入进气道DSI,即无附面层隔道超音速进气道(也有人根据其外形称之为“鼓包式”进气道)。这种进气道是洛克希德•马丁公司耗时10年开发的全新概念的超音速进气道,其突出特点是取消了传统超音速进气道上面的附面层隔道(这就是DSI名称的由来)以及其他一些复杂机构,也因此减少了生产和维护费用。在JSF竞争中获胜的洛•马F-35就采用了DSI设计。为了降低其技术风险,洛•马还专门改装了一架F-16进行DSI验证试飞。按照洛•马的说法,DSI可以在包括高超音速在内的各种速度条件下提供出色的性能。要了解DSI的特点及其优势所在,我们需要首先了解战斗机进气道的一些基础知识。战斗机进气道设计基础随着喷气式飞机性能的提高和未来战场对战术飞机的要求日益严苛,进气道设计人员面临的挑战也越来越艰巨。现在的战斗机进气道必须在大的速度、高度范围内以及在机动条件下向发动机高质量的气流,而无论此时发动机油门此时处于何种位置——慢车、军用推力还是加力状态。同时进气道设计人员还必须考虑到其它一些由于构形特征带来的限制,例如前起落架、武器舱、设备维护口盖以及前机身形状等,以便确定最佳构形从而减小阻力、减轻重量、降低费用、提高可靠性以及提供良好的推进性能。近年来的空中作战中,隐形飞机的技术优势逐渐凸现,“隐形”已成为下一代战斗机必备的基本特征。进气道作为飞机上一个重要的雷达波反射源,设计人员要将低可见性要求纳入考虑范畴,令各方面性能获得良好折中,殊非易事。喷气式发动机的工作过程,简单地说就是:压缩空气,然后点火做功产生推力。除了高速飞行器使用的冲压式喷气发动机外,我们通常所说的喷气发动机都是利用自身的压气机来完成大部分空气压缩工作(根据压气机的类型不同又分为离心式压气机和轴流式压气机),而剩下的那部分空气压缩工作,则是由进气道来完成的。此外,压气机(特别是作为目前主流的轴流式压气机)对气流畸变相当敏感,因此进气道还有一个工作就是要保证压气机入口处的气流畸变尽可能小。所以,进气道虽然外形看起来相当简单,就是一个金属管,但要完成这两大功能却并不容易。进气道具有两个主要组成部分,即进气口和扩压段。空气通过进气口进入,然后在扩压段减速增压以便使发动机压气机平面处的气流速度降至可以接受的水平(典型的是M0.2~M0.5)。随着飞机最大速度的增大,进气道特别是进气口的复杂性也随之增加。超音速状态下,要想令前方气流减速至亚音速,需要利用激波。激波本身是一个致密空气层,超音速气流穿越激波之后,速度大幅下降,而温度、压强等却急速增大。进气道就是通过激波压缩空气使之在进入扩压段之前减速至亚音速。根据飞机各方面要求的不同,进气道设计人员可以选择单一的正激波或者一道正激波加一系列斜激波的形式,前者就是典型的正激波进气道(如歼-6),后者则是所谓的多波系进气道(如歼-8B是三波系进气道,苏-27是四波系进气道)。一般来说,进气道激波数量增多,阻力减小,进气效率提高,但相应的进气道重量也增大,复杂性也大大增加)。多波系进气道需要采用一个至数个压缩斜面,利用这些斜面压缩空气,产生激波。当设计速度达到M2时,进气道通常需要更精心的设计以增大压力和降低阻力。例如F-15注重超音速性能,因此采用了四波系进气道,内部包括一系列由软件和精确作动的机械系统控制的可动压缩斜板和放气门。这样,在变化的空速和迎角条件下,通过移动斜板调节进气道内、外部形状可以向发动机提供最适宜的气流。放气门和放气通道则允许多余的气流绕过进气道排放出去。F-16设计重点不在超音速,因此采用了最简单的单一正激波压缩的进气道设计——但这仅仅是就进气道本身而言的。事实上F-16前机身底部扁平宽大,可以提供一定的压缩作用,因此就效果而言,F-16的进气道更接近二波系进气道设计。而同样采用腹部进气的国产飞机,前机身截面与F-16大不相同,因此可以看到进气口前明显前伸的压缩斜板(同时兼作附面层隔板)。而同样采用腹部进气的歼-10,前机身截面与F-16大不相同,因此可以看到进气口前明显前伸的压缩斜板(同时兼作附面层隔板)战斗机进气道设计必须考虑到低能量空气层的影响。无论在亚音速还是超音速,在机身表面和压缩斜面上都会形成这样一个空气层,也就是所谓的“附面层”。它实际上是机身表面(也就是空气粘滞表面)和自由气流(此处气流处于自由流动状态)之间的一个区域,激波和附面层的交互作用会增大紊流进而导致发动机压气机平面处无益的气流畸变。如果激波/附面层交互作用增强到一定程度,进气道将变得不稳定,而发动机也会失速。附面层的厚度随前机身长度(也就是机头到进气口这段距离)增大而增大。超音速飞机的设计人员处理附面层现象的传统方法是在附面层到达进气道喉部之前改变附面层流向,同时将进气道置于远离附面层的自由流中——这里的气流不受附面层现象的影响。在F-16上,被称作附面层隔道的结构可以提供从机身下表面到进气道上唇口之间4.5英寸的间隙——这个尺寸是F-16以最大速度飞行时附面层的厚度。在F-16上,被称作附面层隔道的结构可以提供从机身下表面到进气道上唇口之间4.5英寸的间隙——这个尺寸是F-16以最大速度飞行时附面层的厚度战斗机进气道设计在最近10年中开始出现后掠式进气口设计方案,如F/A-18E/F和F-22。这种特点会增加附面层形成的面积,并增大附面层控制的难度。典型的做法是增加放气系统,它可以通过在压缩面上的小孔将无益的气流导入进气道内的放气管道。F-22的Caret进气口和机身之间有明显的空隙,就是分离边界层的地方F-22进气口后上方的格栅,靠前的是泄放边界层的出气口,靠后的是调节进气量的出气口(超音速时,进气太多,要放掉一点)好了,在了解了进气道的基础知识后,我们再来看看什么是DSI,以及它相对于常规进气道究竟有什么改进。无附面层隔道超音速进气道概念洛•马的工程师在1990年代早期就开始研究传统超音速进气道概念的替代方案。他们试图取消和附面层控制有关的复杂机构:附面层隔离板、放气系统、旁通系统。通过取消这些机构,设计人员可以从飞机上减轻大约300磅的重量。最后的研究结果就是如今的DSI,或叫做鼓包式进气道。在DSI上已经去掉了附面层隔离板,进气口也整合到前机身设计中。在进气口前设计有一个三维的表面(鼓包)。这个鼓包的功能是作为一个压缩面,同时增大压力分布以将附面层空气“推离”进气道。进气道整流罩唇口的设计特点使得主要的附面层气流可以溢出流向后机身。整个DSI没有可动部件,没有附面层隔离板,也没有放气系统或旁通系统。换句话说,DSI实际是针对常规进气道的进气口部分进行的改进。精心设计的三维压缩面配合进气口,不仅可以完成传统附面层隔道的功能,还可以提供气流预压缩,从而提高进气道高速状态下的效率,并减小阻力。随着进气道调节系统的取消,重量自然减轻。
本文标题:进气口边界层控制种种
链接地址:https://www.777doc.com/doc-3266000 .html