您好,欢迎访问三七文档
一、利用紫外光谱测定黄酮类化合物的结构大多数黄酮类化合物在甲醇中的紫外吸收光谱由两个主要吸收带组成。出现在300~400nm之间的吸收带称为带Ⅰ,出现在240~280nm之间的吸收带称为带Ⅱ。不同类型的黄酮化合物的带Ⅰ或带Ⅱ的峰位、峰形和吸收强度不同,因此从紫外光谱可以推测黄酮类化合物的结构类型。当向黄酮类化合物的甲醇(或乙醇)溶液中分别加入甲醇钠(NaOMe)、乙酸钠(NaOAc)、乙酸钠-硼酸(NaOAc-H3BO3)、三氯化铝或三氯化铝-盐酸(AlCl3/HCl)试剂能使黄酮的酚羟基离解或形成络合物等,导致光谱发生变化。据此变化可以判断各类化合物的结构,这些试剂对结构具有诊断意义,称为诊断试剂。黄酮和黄酮醇类(一)黄酮、黄酮醇类在甲醇中的UV光谱特征黄酮或黄酮醇的带Ⅰ是由B环桂皮酰基系统的电子跃迁所引起的吸收,带Ⅱ是由A环的苯甲酰基系统的电子跃迁所引起的吸收。黄酮和黄酮醇的UV光谱图形相似,仅带Ⅰ位置不同,黄酮带Ⅰ位于304~350nm,黄酮醇带Ⅰ位于358~385nm。利用带Ⅰ的峰位不同,可以区别这两类化合物。黄酮、黄酮醇的B环或A环上取代基的性质和位置不同将影响带Ⅰ或带Ⅱ的峰位和形状。例如,7和4′位引入羟基、甲氧基等含氧取代基,可引起相应吸收带向红位移。又如3-或5-位引入羟基,因能与C4=O形成氢键缔合,前者使带Ⅰ向红位移,后者使带Ⅰ、带Ⅱ均向红位移。B环上的含氧取代基逐渐增加时,带Ⅰ向红位移值(nm)也逐渐增加,但不能使带Ⅱ产生位移。有时(例如3′,4′-位有2个羟基或2个甲氧基或亚甲二氧基)仅可能影响带Ⅱ的形状,使带Ⅱ歧分为双峰或1个主峰(Ⅱb位于短波处)和1个肩峰(sh)或弯曲(Ⅱa位于长波处)。A环上的含氧取代基增加时,使带Ⅱ向红位移,而对带Ⅰ无影响,或影响甚微(但5-羟基例外)。黄酮或黄酮醇的3-,5-或4′-羟基被甲基化或苷化后,可使带Ⅰ向紫位移,3-OH甲基化或苷化使带Ⅰ(328~357nm)与黄酮的带Ⅰ的波长范围重叠(且光谱曲线的形状也相似),5-OH甲基化使带Ⅰ和带Ⅱ都向紫位移5~15nm,4′-OH甲基化或苷化,使带Ⅰ向紫位移3~10nm。其他位置上的羟基取代对甲醇中的紫外光谱几乎没有影响。(二)利用诊断试剂对黄酮、黄酮醇类化合物UV光谱的影响检出羟基位置1.甲醇钠(NaOMe),主要是判断是否有4′-OH,3、4′-二OH或3、3′、4′-三OH。2.乙酸钠,较为突出的是判断是否有7-OH。[举例说明]3.乙酸钠/硼酸主要判断A环或B环是否有邻二酚羟基(5,6-二OH除外)。[举例说明]4.三氯化铝及三氯化铝/盐酸,为判断有无邻二酚羟基,3-OH、5-OH提供信息。(三)异黄酮、二氢黄酮和二氢黄酮醇类在甲醇中的UV光谱特征这三类化合物都有苯甲酰系统,而无桂皮酰结构,所以它们的紫外光谱都有强的带Ⅱ吸收,异黄酮带Ⅱ吸收在245~270nm,而二氢黄酮和二氢黄酮醇的带Ⅱ在270~295nm,一般只受A环的含氧取代基的影响,A环含氧取代基数增加,吸收峰向红位移。(四)利用诊断试剂对异黄酮、二氢黄酮和二氢黄酮醇类化合物的UV光谱的影响判断羟基位置1.甲醇钠①带Ⅱ向红位移,示A环上有羟基。②如有5,6,7-或5,7,8-三羟基或3′,4′-二羟基,则吸收带将随放置的延长而逐渐衰退。③二氢黄酮、二氢黄酮醇带Ⅱ向红位移的大小取决于是否有游离的5-OH。2.乙醇钠①乙醇钠使7-羟基异黄酮的带Ⅱ向红位移6~20nm,但6-位有含氧取代基时,乙醇钠几乎不能使带Ⅱ产生移动。4′,5,6,7-四羟基异黄酮的紫外光谱随时间延长而衰退。②乙醇钠使5,7-二羟基二氢黄酮和5,7-二羟基二氢黄酮醇带Ⅱ向红位移34~37nm,而其相应的5-去氧化合物则移动51~58nm。5,6,7-三羟基二氢黄酮的紫外光谱随时间延长而衰退。3.乙醇钠/硼酸不能用NaOAc/H3BO3对异黄酮、二氢黄酮和二氢黄酮醇类的紫外光谱的影响来检查B环邻位二羟基,因为它们的B环与主要发色团缺少有效的共轭。但它们中的A环有6,7-二羟基时,加入NaOAc/H3BO3后使带Ⅱ向红位移10~15nm。4.三氯化铝和三氯化铝/盐酸①异黄酮、二氢黄酮(可能也包括二氢黄酮醇)的A环如有邻二羟基(6,7-或7,8-,不包括5,6-),则带Ⅱ在AlCl3中比在AlCl3/HCl中向红位移11~30nm。②有5-羟基的异黄酮,其带Ⅱ在AlCl3/HCl存在下与在甲醇中的光谱相比,向红位移10~14nm,而有5-羟基的二氢黄酮和有5-羟基的二氢黄酮醇类的带Ⅱ在同样情况下向红位移20~26nm。目标检测:黄酮类化合物的鉴别与结构测定现在多依赖于谱学的综合解析,而化学方法和色谱方法已降至辅助地位。未知黄酮类化合物的鉴定,多在测定分子式的基础上,利用PPC或TLC得到的Rf值或hRf值与文献比较或分析对比样品在甲醇溶液中及加入各种诊断试剂后得到的紫外及可见光谱进行剖析。同时,对于化合物的颜色反应,以及在提取分离过程中所表现的行为(如溶解度、酸或碱中的溶解情况、铅盐沉淀等)也应注意分析。但这些方法均有一定局限性,并曾导致得出过一些错误结论。质子核磁共振(1H—NMR)因为可定量测定H的个数,以及根据质子的化学位移和芳香氢核之间的自旋偶合所提供的信息(裂分数目及偶合常数大小),可确定黄酮母核上的取代模式。近来由于仪器分辨率的不断改进,加以同核去偶、溶剂位移以及核磁共振技术的使用,1H-NMR谱的测定对分析天然黄酮类化合物的结构已经成为一种非常重要的手段。但是正如以后谈到的那样,在黄酮类化合物的1H-NMR谱上,有时要想确切指认每个信号并不是一件容易的事情。例如当黄酮类母核的A-环上只有一个芳香氢核时,要想与H-3信号区别,就是十分困难的问题。解决这种问题,13C核磁共振(13C-NMR)技术有很大的优势。加上各种取代基位移及苷化位移效应的发现,使得图谱的解析工作大大简化。因此,13C-NMR技术在黄酮类化合物的结构鉴定中发挥着越来越重要的作用。质谱(MS)技术,尤其场解析质谱(FD-MS)与快速原子轰击质谱(FAB-MS)及串联质谱(MS-MS)的出现与应用,使其成为黄酮类化合物结构鉴定的重要手段之一(质谱技术的优势是只需要微量的样品就可获得有关整个分子结构及其主要碎片结构的重要信息)。实际工作中常常根据需要,灵活、综合运用上述方法和手段,并辅以必要的化学方法,以求结构鉴定获得满意的结果。二、色谱法在黄酮类化合物鉴别中的应用纸色谱(PPC)适用于分离各种天然黄酮类化合物及其苷类的混合物。混合物的鉴定常采用双向色谱法。以黄酮苷类来说,一般第一向展开采用某种醇性溶剂,如n-BuOH-HOAc-H2O(4∶1∶5上层,BAW)、t-BuOH-HOAC-H2O(3∶1∶1,TBA)或水饱和的n-BuOH等,这些主要是根据分配作用原理进行分离。第二向展开溶剂则用水或下列水溶液,如:2%~6%HOAc、3%NaCl及HOAc-浓HCl-H2O(30∶3∶10)等。它们主要是根据吸附作用原理进行分离。黄酮类化合物苷元一般宜用醇性溶剂或用C6H6-HOAc-H2O(125∶72∶3)、CHCl3-HOAC-H2O(13∶6∶l)、PhOH-H2O(4∶1)或HOAC一浓HCl-H2O(30∶3∶3)进行分离。而花色苷及花色苷苷元,则可用含HCl或HOAC的溶液作为展开剂。多数黄酮类化合物在纸色谱上用紫外光灯检查时,可以看到有色斑点,以氨蒸气处理后常产生明显的颜色变化。此外还可喷以2%AlCl3(甲醇)溶液(在紫外光灯下检查)或1%FeC13-1%K3Fe(CN)6(1∶1)水溶液等显色剂。黄酮类化合物苷元中,平面性分子如黄酮、黄酮醇、查耳酮等,用含水类溶剂如3%~5%HOAC展开时,几乎停留在原点不动(Rf<0.02=;而非平面性分子如二氢黄酮、二氢黄酮醇、二氢查耳酮等,因亲水性较强,故Rf值较大(0.10~0.30)。黄酮类化合物分子中羟基苷化后,极性即随之增大,故在醇性展开剂中Rf值相应降低,同一类型苷元,Rf值依次为:苷元>单糖苷>双糖苷。以在BAW中展开为例,多数类型苷元(花色苷元例外)Rf值在0.70以上,而苷则小于0.70。但在用水或2%~8%HOAC,3%NaCl或1%HCl展开时,则上列顺序将会颠倒,苷元几乎停留在原点不动,苷类的Rf值可在0.5以上,糖链越长,则Rf值越大。另外,糖的结合位置对Rf值也有重要的影响。不同类型黄酮类化合物在双向PPC展开时常常出现在特定的区域,因此可推测它们的结构类型以及判定是否成苷以及含糖数量。除PPC外,TLC用于黄酮类化合物的鉴定也日趋广泛。一般采用吸附薄层色谱,常用的吸附剂有硅胶与聚酸胺,其次是纤维素。硅胶薄层色谱;用于分离与鉴定弱极性黄酮类化合物较好。分离黄酮苷元常用的展开剂是甲苯-甲酸甲酯-甲酸(5∶4∶1),并可以根据待分离成分极性的大小适当地调整甲苯与甲酸的比例。另外尚有苯-甲醇(95:5)、苯-甲醇-醋酸(35∶5∶5)、氯仿一甲醇(8.5∶1.5∶7∶0.5)、甲苯-氯仿-丙酮(4O∶25∶35)、丁醇一吡啶-甲酸(40∶10:∶)等分离黄酮苷元的衍生物如甲醚或醋酸乙酯等中性成分,可用苯-丙酮(9∶1)、苯-醋酸乙酯(7.5∶2.5)等为展开剂。聚酸胺薄层色谱:适用范围较广,特别适合于分离合游离酚羟基的黄酮及其苷类。由于聚酸胺对黄酮类化合物吸附能力较强,因而需要可以破坏其氢键缔合的溶剂为展开剂。在大多数展开剂中含有醇、酸或水。常用的展开剂有乙醇一水(3∶2)、水-乙醇-乙酸丙酮(4∶2∶1)、水-乙醇-甲酸-乙酸丙酮(5∶1.5∶l:0.5)、水饱和的正丁醇一醋酸(100∶1∶100∶2)、丙酮-水(1∶1)、丙酮-95%乙醇-水(2∶1∶2)、95%乙醇-醋酸(100∶2)、苯-甲醇-丁酮(60∶20∶20)等。Stahl总结前人的工作,介绍了一些黄酮苷元和黄酮苷用硅胶、聚酸胺与纤维素三种薄层色谱和四种混合溶剂作为展开剂所得到的hRf值。三、紫外及可见光谱在黄酮类化合物鉴别中的应用紫外及可见分光光度法是鉴别黄酮类化合物结构的一种重要手段,一般程序如下:(1)测定样品在甲醇溶液中的UV光谱;(2)测定样品在甲醇溶液中加入各种诊断试剂后得到的UV及可见光谱。常用的诊断试剂有甲醇钠(NaOMe).醋酸钠(NaOAc)、醋酸钠一硼酸(NaOAc-H3BO3).三氯化铝(AICI3)及三氯化铝一盐酸(AICI3-HCI)等。提取与分离一、提取黄酮类化合物在花、叶、果等组织中,一般多以苷的形式存在,而在木部坚硬组织中,则多以游离苷元形式存在。黄酮苷类以及极性稍大的苷元(如羟基黄酮、双黄酮、橙酮、查耳酮等),一般可用丙酮、醋酸乙酯、乙醇、水或某些极性较大的混合溶剂进行提取。其中用得最多的是甲醇-水(1∶1)或甲醇。一些多糖苷类则可以用沸水提取。在提取花青素类化合物时,可加入少量酸(如0.1%盐酸)。但提取一般黄酮苷类成分时,则应当慎用,以免发生水解反应。为了避免在提取过程中黄酮苷类发生水解,常按一般提取苷的方法事先破坏酶的活性。大多数黄酮苷元宜用极性较小的溶剂,如氯仿、乙醚、醋酸乙酯等提取,对多甲氧基黄酮的游离苷元,可用苯进行提取。对得到的粗提取物可进行精制处理,常用的方法有:(一)溶剂萃取法:利用黄酮类化合物与混入的杂质极性不同,选用不同溶剂进行萃取可达到精制纯化目的。例如植物叶子的醇浸液,可用石油醚处理,以便除去叶绿素、胡萝卜素等脂溶性色素。而某些提取物的水溶液经浓缩后则可加入多倍量浓醇,以沉淀除去蛋白质、多糖类等水溶性杂质。有时溶剂萃取过程也可以用逆流分配法连续进行。常用的溶剂系统有:水一醋酸乙酯,正丁醇一石油醚等。溶剂萃取过程在除去杂质的同时,往往还可以收到分离苷和苷元或极性苷元与非极性苷元的效果。(二)碱提取酸沉淀法黄酮苷类虽有一定极性,可溶于水,但却难溶于酸性水,易溶于碱性水,故可用碱性水提取,再将碱水提取液调成酸性,黄酮苷类即可沉淀析出。此法简便易行,如芦丁、橙皮苷、黄芩苷提取都应用了这个方法。现以从槐米中提取芦
本文标题:黄酮类化合物的结构
链接地址:https://www.777doc.com/doc-3270294 .html