您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 二次函数的图像和性质五
一般地,抛物线y=a(x-h)+k与y=ax的相同,不同22形状位置y=ax2y=a(x-h)+k2上加下减左加右减抛物线y=a(x-h)2+k有如下特点:1.当a﹥0时,开口,当a﹤0时,开口,向上向下2.对称轴是;3.顶点坐标是。直线X=h(h,k)二次函数开口方向对称轴顶点坐标y=2(x+3)2+5y=-3x(x-1)2-2y=4(x-3)2+7y=-5(2-x)2-6直线x=–3直线x=1直线x=2直线x=3向上向上向下向下(-3,5)(1,-2)(3,7)(2,-6)你能说出二次函数y=—x-6x+21图像的特征吗?212如何画出的图象呢?216212xxy我们知道,像y=a(x-h)2+k这样的函数,容易确定相应抛物线的顶点为(h,k),二次函数也能化成这样的形式吗?216212xxy配方216212xxyy=—(x―6)+3212你知道是怎样配方的吗?(1)“提”:提出二次项系数;(2)“配”:括号内配成完全平方;(3)“化”:化成顶点式。归纳二次函数y=—x-6x+21图象的画法:(1)“化”:化成顶点式;(2)“定”:确定开口方向、对称轴、顶点坐标;(3)“画”:列表、描点、连线。212510510Oxyx…3456789…3)6(212xy…7.553.533.557.5…求次函数y=ax²+bx+c的对称轴和顶点坐标.函数y=ax²+bx+c的顶点是配方:cbxaxy2ccxabxa2提取二次项系数acababxabxa22222配方:加上再减去一次项系数绝对值一半的平方222442abacabxa整理:前三项化为平方形式,后两项合并同类项.44222abacabxa化简:去掉中括号这个结果通常称为求顶点坐标公式..44222abacabxay22:24:(,)24byaxbxcxabacbaa的对称轴是顶点坐标是1432xxy322xxy1.说出下列函数的开口方向、对称轴、顶点坐标:.44222abacabxay函数y=ax²+bx+c的对称轴、顶点坐标是什么?函数y=ax²+bx+c的对称轴、顶点坐标是什么?22:24:(,)24byaxbxcxabacbaa的对称轴是顶点坐标是抛线顶点标为.则22.物y=2x+bx+c的坐(-1,2),b=______,c=______例1:指出抛物线:254yxx的开口方向,求出它的对称轴、顶点坐标、与y轴的交点坐标、与x轴的交点坐标。并画出草图。对于y=ax2+bx+c我们可以确定它的开口方向,求出它的对称轴、顶点坐标、与y轴的交点坐标、与x轴的交点坐标(有交点时),这样就可以画出它的大致图象。①y=2x2-5x+3③y=(x-3)(x+2)②y=-x2+4x-9求下列二次函数图像的开口、顶点、对称轴21请画出草图:3-9-6抛物线位置与系数a,b,c的关系:⑴a决定抛物线的开口方向:a>0开口向上a<0开口向下⑵a,b决定抛物线对称轴的位置:(对称轴是直线x=-—)①a,b同号<=>对称轴在y轴左侧;2ab【左同右异】②b=0<=>对称轴是y轴;③a,b异号<=>对称轴在y轴右侧⑶c决定抛物线与y轴交点的位置:⑷顶点坐标是(,)。ab2abac442(5)二次函数有最大或最小值由a决定。当x=-—时,y有最大(最小)值y=b2a______________________4a4ac-b2①c>0<=>图象与y轴交点在x轴上方;③c<0<=>图象与y轴交点在x轴下方。②c=0<=>图象过原点;-1例2、已知函数y=ax2+bx+c的图象如下图所示,x=为该图象的对称轴,根据图象信息你能得到关于系数a,b,c的一些什么结论?31y1..x131.抛物线y=2x2+8x-11的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限2.不论k取任何实数,抛物线y=a(x+k)2+k(a≠0)的顶点都在()A.直线y=x上B.直线y=-x上C.x轴上D.y轴上3.若二次函数y=ax2+4x+a-1的最小值是2,则a的值是()•A4B.-1C.3D.4或-1CBA4.若二次函数y=ax2+bx+c的图象如下,与x轴的一个交点为(1,0),则下列各式中不成立的是()A.b2-4ac0B.0C.a+b+c=0D.01xyo-15.若把抛物线y=x2-2x+1向右平移2个单位,再向下平移3个单位,得抛物线y=x2+bx+c,则()A.b=2c=6B.b=-6,c=6C.b=-8c=6D.b=-8,c=18BB-2ab4a4ac-b26.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx-3的大致图象是()7.在同一直角坐标系中,二次函数y=ax2+bx+c与一次函数y=ax+c的大致图象可能是()xyoxyoxyoxyoABCD-3-3-3-3xyoxyoxyoxyoABCDCC二次函数y=ax2+bx+c(a≠0)的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a0)y=ax2+bx+c(a0)由a,b和c的符号确定由a,b和c的符号确定向上向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:abacab44,22abacab44,22abx2直线abx2直线abacabx44,22最小值为时当abacabx44,22最大值为时当(五)、学习回顾:抛物线开口方向对称轴顶点坐标y=ax2(a0)y=ax2+k(a0)y=a(x-h)2(a0)y=a(x-h)2+k(a0)y=ax2+bx+c(a0)填写表格:1.相同点:(1)形状相同(图像都是抛物线,开口方向相同).(2)都是轴对称图形.(3)都有最(大或小)值.(4)a0时,开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.a0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随x的增大而减小.驶向胜利的彼岸小结拓展回味无穷二次函数y=ax2+bx+c(a≠0)与=ax²的关系2.不同点:(1)位置不同(2)顶点不同:分别是和(0,0).(3)对称轴不同:分别是和y轴.(4)最值不同:分别是和0.驶向胜利的彼岸小结拓展回味无穷二次函数y=ax2+bx+c(a≠0)与=ax²的关系abacab44,22abx2直线ab2ab2ab2abac442abac442abac442abac4423.联系:y=a(x-h)²+k(a≠0)的图象可以看成y=ax²的图象先沿x轴整体左(右)平移||个单位(当0时,向右平移;当0时,向左平移),再沿对称轴整体上(下)平移||个单位(当0时向上平移;当0时,向下平移)得到的.
本文标题:二次函数的图像和性质五
链接地址:https://www.777doc.com/doc-3270964 .html