您好,欢迎访问三七文档
Jackson’sTheoremandCirculantPreconditionedToeplitzSystemsRaymondH.ChanandMan-ChungYeungDepartmentofMathematicsUniversityofHongKongPokfulamRoadHongKongDecember1990RevisedSeptember1991AbstractPreconditionedconjugategradientmethodisusedtosolven-by-nHermitianToeplitzsystemsAnx=b.ThepreconditionerSnistheStrang’scirculantpreconditionerwhichisde nedtobethecirculantmatrixthatcopiesthecentraldiagonalsofAn.TheconvergencerateofthemethoddependsonthespectrumofS 1nAn.UsingJackson’stheoreminapproximationtheory,weprovethatifAnhasapositivegeneratingfunctionfwhose‘thderivativef(‘),‘ 0,isLipschitzoforder0 1,thenthemethodconvergessuperlinearly.Weshowmoreoverthattheerrorafter2qconjugategradientstepsdecreaseslikeQqk=2(log2k=k2(‘+ )).AbbreviatedTitle.Jackson’sTheoremandToeplitzSystems.KeyWords.Jackson’stheorem,Toeplitzmatrix,circulantmatrix,precon-ditionedconjugategradientmethod,generatingfunction.AMS(MOS)SubjectClassi cations.42A10,65F10.11Introduction.Ann-by-nmatrixAn=[ai;j]issaidtobeToeplitzifai;j=ai j,i.e.Anisconstantalongitsdiagonals.ToeplitzsystemsoftheformAnx=boccurinavarietyofapplications,especiallyinsignalprocessingandcontroltheory.ExistingdirectmethodsfordealingwiththemincludetheLevison-Trench-ZoharO(n2)algorithms[19],andavarietyofO(nlog2n)algorithmssuchastheonebyAmmarandGragg[1].Thestabilitypropertiesofthesedirectmethodsforsymmetricpositivede nitematricesarediscussedinBunch[2].Inthispaper,weconsideraniterativemethod,thepreconditionedconjugategradientmethod,forsolvingToeplitzsystems.Ann-by-nToeplitzmatrixBnissaidtobecirculantifitsdiagonalsbjsatisfybn j=b jfor0j n 1.Weremarkthatcirculantmatricescanalwaysbediagonalizedbyunitarymatrices.Infact,wehaveBn=F n nFn,where nisdiagonalandFnistheFouriermatrixwithentriesgivenby[Fn]jk=1pne 2 ijkn,seeDavis[11].Strang[17] rstsuggestedtheuseofpreconditionedconjugategradientmethodwithcirculantmatrixBnaspreconditionerforsolvingpositivede niteToeplitzsystem.InsteadofsolvingAnx=b,wesolvethepreconditionedsystemB 1nAnx=B 1nbbytheconjugategradientmethodwithBnbeingacirculantmatrix.Thenumberofoperationsperiterationinthepreconditionedconjugategradientmethoddependsmainlyontheworkofcomputingthematrix-vectormultiplicationB 1nAny,seeforinstanceGolubandvanLoan[13].Foranyvectory,sinceB 1ny=F n 1nFny,theproductB 1nycanbefounde -cientlybytheFastFourierTransforminO(nlogn)operations.Likewise,theproductAnycanalsobecomputedbytheFastFourierTransformby rstembeddingAnintoa2n-by-2ncirculantmatrix.ThemultiplicationthusrequiresO(2nlog(2n))operations.ItfollowsthatthetotaloperationsperiterationisoforderO(nlogn).Inordertocompetewithdirectmethods,thecirculantmatrixBnshouldbechosensuchthattheconjugategradientmethodconvergessu cientlyfastwhenappliedtothepreconditionedsystemB 1nAnx=B 1nb.Itiswell-knownthatthemethodconvergesfastifB 1nAnhasaclusteredspectrum,i.e.B 1nAnisoftheformIn+Un+WnwhereInistheidentitymatrix,UnisamatrixoflowrankandWnisamatrixofsmall‘2norm.Strangin[17]proposedapossiblechoiceofcirculantpreconditionerSn.ItisobtainedbycopyingthecentraldiagonalsofAnandre ectingthem2aroundtocompletethecirculant.ChanandStrang[3]thenprovedthatifthediagonalsajoftheToeplitzmatrixAnareFouriercoe cientsofapositivefunctionintheWienerclass,i.e.Pjjajj1,thentheeigenvaluesofthepreconditionedsystemS 1nAnwillbeclusteredaroundoneforlargen.Itfol-lowsthatthepreconditionedconjugategradientmethod,whenappliedtothepreconditionedsystem,convergessuperlinearlyforlargen.Moreprecisely,forall 0,thereexistsaconstantc( )0suchthattheerrorvectoreqofthepreconditionedconjugategradientmethodattheqthiterationsatis esjjeqjj c( ) qjje0jj(1)whennissu cientlylarge.Herejjxjj2=x S 1=2nAnS 1=2nx.HencethenumberofiterationsrequiredforconvergenceisindependentofthesizeofthematrixAnwhennislarge.Inparticular,thesystemAnx=bcanbesolvedinO(nlogn)operations.Overthepastfewyears,severalotherpreconditionershavealsobeenproposed,seeforinstance,T.Chan[9],Chan[5],Tyrtyshinkov[20],KuandKuo[16]andHuckle[15].InChan[4,5]andChan,JinandYeung[6],wehaveshownrespectivelythatthepreconditionersproposedin[9],[5]and[20]alsoworkfortheWienerclassfunctions,i.e.(1)holdsifPjjajj1.Huckle,ontheotherhand,hasprovedin[15]thathispreconditionerworksfortheclassoffunctionswithPjjjajj21.WeremarkthatitistheBesovspaceB1=22.ForT.Chan’spreconditioner,ChanandYeung[7]recentlyhaveextendedthesuperlinearconvergenceresultstotheclassof2 -periodiccontinuousfunctions.OneoftheaimsofthispaperistoobtainsimilarresultsforStrang’spreconditioner.WewillprovethatStrang’spreconditionerworksforaslightlysmallerclassoffunctions(see(30))thanT.Chan’spreconditionerdoes.Intheconjugategradientmethod,anestimateofthenumberofiterationsrequiredforconvergencecanbeobtainedbystudyingthepreciserateatwhichjjeqjjgoestozeroin(1).Trefethen[18] rstprovedthatiffisapositiverationalfunctionoftype( ; ),thenthepreconditionedsystemS 1nAnhasatmost1+2maxf ; gdistincteigenvalues.Hencetheconjugategradientmethod,whenappliedtothepreconditionedsystem,convergesinatmost1+2maxf ; gsteps.Healsoprovedthatiffispositiveandanalyticinaneighbourhoodofjzj=1andifSnis
本文标题:Jacksons-Theorem-and-the-Circulant-Preconditioned-
链接地址:https://www.777doc.com/doc-3273855 .html