您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 1.1线性回归方程的求法
必修3(第二章统计)知识结构收集数据(随机抽样)整理、分析数据估计、推断简单随机抽样分层抽样系统抽样用样本估计总体变量间的相关关系用样本的频率分布估计总体分布用样本数字特征估计总体数字特征线性回归分析统计的基本思想y=f(x)y=f(x)y=f(x)实际样本模拟抽样分析两个变量的关系不相关相关关系函数关系线性相关非线性相关现实生活中两个变量间的关系有哪些呢?思考:相关关系与函数关系有怎样的不同?函数关系中的两个变量间是一种确定性关系相关关系是一种非确定性关系函数关系是一种理想的关系模型相关关系在现实生活中大量存在,是更一般的情况自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):2、现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等探索:水稻产量y与施肥量x之间大致有何规律?1020304050500450400350300·······发现:图中各点,大致分布在某条直线附近。探索2:在这些点附近可画直线不止一条,哪条直线最能代表x与y之间的关系呢?xy施化肥量水稻产量施化肥量x15202530354045水稻产量y330345365405445450455散点图1020304050500450400350300·······xy施化肥量水稻产量n2iii=1Q(a,b)=(y-bx-a)取最小值时,a,b的值.ii(x,y)ii(x,y)|ii|y-y怎样求回归直线?最小二乘法:ˆˆˆy=bx+a(x,y)称为样本点的中心。ˆˆˆn(x-x)(y-y)iii=1b=n2(x-x)ii=1a=y-bx.nn11其中x=x,y=y.iinni=1i=1niii=1n22ii=1xy-nxy=,x-nx(3)对两个变量进行的线性分析叫做线性回归分析。2、回归直线方程:ˆˆˆnniiiii=1i=1nn222iii=1i=1(x-x)(y-y)x-nxyb==,(x-x)x-nxa=y-bxy(2)相应的直线叫做回归直线。(1)所求直线方程叫做回归直线方程;其中ˆˆˆy=bx+a(注意回归直线一定经过样本点的中心)例1假设关于某设备的使用年限x和所有支出的维修费用y(万元)有如下的统计数据:x23456Y2.23.85.56.57.0若由此资料所知y对x呈线性相关关系,试求:1.回归直线方程2.估计使用年限为10年时,维修费用是多少?解题步骤:1.作散点图2.把数据列表,计算相应的值,求出回归系数3.写出回归方程,并按要求进行预测说明。例2(2007年广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据。X3456y2.5344.5(1)请画出上表数据的散点图(2)请根据上表提供的数据,用最小二乘法求出y关于x的性回归方程ˆˆybxa(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:32.5435464.566.5)小结:求回归直线方程的步骤ˆˆˆnniiiii=1i=1nn222iii=1i=1(x-x)(y-y)x-nxyb==,(x-x)x-nxa=y-bxy(2)所求直线方程叫做回归直线方程;其中ˆˆˆy=bx+a(1)作散点图,通过图看出样本点是否呈条状分布,进而判断两个量是否具有线性相关关系。(3)根据回归方程,并按要求进行预测说明。相关系数•1.计算公式•2.相关系数的性质•(1)|r|≤1.•(2)|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.•问题:达到怎样程度,x、y线性相关呢?它们的相关程度怎样呢?niii=1nn22iii=1i=1(x-x)(y-y)r=(x-x)(y-y)负相关正相关n(x-x)(y-y)iii=1r=nn22(x-x)×(y-y)iii=1i=1相关系数r>0正相关;r<0负相关.通常,r∈[-1,-0.75]--负相关很强;r∈[0.75,1]—正相关很强;r∈[-0.75,-0.3]--负相关一般;r∈[0.3,0.75]—正相关一般;r∈[-0.25,0.25]--相关性较弱;第一章统计案例1.1回归分析的基本思想及其初步应用(第二课时)a.比《数学3》中“回归”增加的内容数学3——统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程y=bx+a4.用回归直线方程解决应用问题选修1-2——统计案例5.引入线性回归模型y=bx+a+e6.了解模型中随机误差项e产生的原因7.了解相关指数R2和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果什么是回归分析:“回归”一词是由英国生物学家F.Galton在研究人体身高的遗传问题时首先提出的。根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,Y记子辈身高。虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,X和Y之间存在一种相关关系。一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈的身高有向中心回归的特点。“回归”一词即源于此。虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的回归含义是相同的。不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一种应用于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。回归分析的内容与步骤:统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量。回归分析通过一个变量或一些变量的变化解释另一变量的变化。其主要内容和步骤是,首先根据理论和对问题的分析判断,将变量分为自变量和因变量;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。思考P3产生随机误差项e的原因是什么?思考P4产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、其它因素的影响:影响身高y的因素不只是体重x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高y的观测误差。函数模型与回归模型之间的差别中国GDP散点图020000400006000080000100000120000199219931994199519961997199819992000200120022003年GDP函数模型:abxy回归模型:eabxy可以提供选择模型的准则函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。根据最小二乘法估计和就是未知参数a和b的最好估计,ab制表xi2xiyiyixi78合计654321i2iiixyxxynni=1i=1,,,.例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。根据最小二乘法估计和就是未知参数a和b的最好估计,ab于是有b=12210.849niiiniixynxyxnx85.712aybx所以回归方程是0.84985.712yx所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为0.8497285.71260.316()ykg(,)xy称为样本点的中心探究P4:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?探究P4:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右。对回归模型进行统计检验表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。残差分析与残差图的定义:然后,我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。12,,,neee编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。残差图的制作及作用。•坐标纵轴为残差变量,横轴可以有不同的选择;•若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;•对于远离横轴的点,要特别注意。身高与体重残差图异常点•错误数据•模型问题几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的
本文标题:1.1线性回归方程的求法
链接地址:https://www.777doc.com/doc-3276348 .html