您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 电路分析基础习题解答
第9章习题与解答9-1解:(a)=608010053.13()CZRjXj(b)=603067.126.6()LZRjXj(c)=80305090()CLZjXjXjj(d)=R60803078.139.8()CLZjXjXjj(e)1111=0.020836.87()6080CYjSRjX(f)1111=0.03763.4()6030LYjSRjX(g)11=0.02080.020890()CLYjSjXjX(h)111=0.01670.02080.026751.24()CLYjSRjXjX9-2解:(a)8(4)4=84jjZjj=4-j8=8.718-63.43()(b)令电阻和电容并联为'Z,则20(10)'=2010jZj=4-j8()所以(48)(1216)=481216jjZjj=8-j6=10-36.87()(c)100(100)2060=100100jZjj=70+j10=70.718.13()9-3解:已知0.230()SIA应用分流公式可得622110.2300.1912.571113141010100RSSjCIIIjCRjRjC62262231410101000.2300.06102.571113141010100CSSRjCRjIIIjCRjRjC根据KVL可得12()(603140.2)0.2301000.1912.5717.3776.31912.574.11416.87618.5454.13522.65921.01130.942.84SRURjLIRIjjjj所以()=0.192cos(31412.57)Ritt(A)()=0.062cos(314102.57)Citt(A)=30.92cos(31442.84)ut(V)9-4解:从电源两端看,电路的等效复阻抗为212()()(4060)(30)=64.440.876.24406030LCLCRjXjXjjZRjRjXjXjj=50+-32.36()则10001.3132.36()76.2432.36SUIAZ212406076.2432.361.8951.8()4030LLCRjXjIIARjXjXj223076.2432.360.78694.51()4030CLCjXjIIARjXjXj9-5解:设参考相量为2100()ImA则63122()3141010101031.4()IjCRIjjmA1231.41032.9572.3()IIIjmA所以12233()(200031410)0.0329572.31010101021.4894.2596.6777.16()SURjLIRIjjV即96.67()SUV9-6解:由电路可得322222()(100314031.8510)(100100)()URjLIjIjIV根据KCL有12321UIIIIIjCUjL将上面得出的U代入可得2223(100100)3140(100100)314063.710jIIIjCjIj所以有2(1.5314000)(3140000.5)ICjCI欲使I与2I的相位差为0,应令上式中的虚部为零,即3140000.50C所以1.59()CF欲使I与2I的相位差为45,应令上式中的实部与虚部相等,即1.53140003140000.5CC所以3.18()CF欲使I与2I的相位差为90,应令上式中的实部为零,即1.53140000C所以4.78()CF9-7解:设参考相量为1000U则电容上的电流1I应超前于电压U90,感性负载上的电流2I应滞后于电压U;又知12III,并且有效值12III,故可画出相量图如附图所示,其电流三角形为等边三角形。1II2IU030题9-7附图由附图可得21030I于是有2100010308.6651030URjLjI即8.66R5L,4550.5()10LmH又由1ICU,可得141010()10100ICFU9-8解:由题可得181.651.633()50CUIAX设参考相量为1.6330I则电容上的电压1U应滞后于电流I90,而感性负载RL上的电压2U应超前于电流I一个角度2;又知12UUU,故可画出相量图如附图所示.1UI2U2U题9-8附图对电压三角形运用余弦定理,可得222212122121222cos(90)2sinUUUUUUUUU所以2222221221281.65111.54100sin0.52281.65111.54UUUUU230即2111.5430U于是可得2111.543068.33059.1534.151.6330LURjXjI即59.15R34.15LX9-9解:U与I的相位差就是电路阻抗的阻抗角。图示电路的复阻抗为122212222()50(25)50(25)(75)50257550(187550)75CCCCCCCCCCRRjXjXjXjXZRRjXjXXXjXKX阻抗角为250arctan1875CCXX它就是U与I的相位差。显然,当2501875CCXX取极大值时,最大。所以,令222225050(1875)100[]01875(1875)CCCCCCXXXddXXX求得21875CX即11187543.3()1000CXCC故123.1()43.31000CF将C代入上式可得,U与I的最大相位差为05043.3arctan30187518759-10证:RC并联阻抗分别为11111111111RjCRZjCRRjC22222222111RjCRZjCRRjC根据分压公式得2222012121122111iiRZjCRUUURRZZjCRjCR当1122RCRC时,上式可化简为0212iURURR显然,此时输出与输入电压之比完全由电阻决定,与频率无关,因此常称这种分压器为无失真衰减器,因其对不同的频率分量衰减一致。9-11解:用节点法,设两个独立节点为A和B,节点方程为1111()111()SABLCCABSCCUUURRjXjXjXRUUIjXRjX代入数值得1(1)41(1)4ABABjUjUjjUjU解得3()3()ABUjVUV各支路电流为14(3)11.41445()SAUUIjjAR2322.23626.6()1ALUjIjARjXj33311180()ABCUUjIAjXj4330()BUIAR9-12解:利用戴维南定理,先断开Z支路,求开路电压ocU,电路如附图(a),可得1111000253.13()3040SLUIARjXj2221000236.87()4030SLUIARjXj211230253.1330236.8796()ocLURIXIjjV其次,根据附图(b)求等效阻抗oZ1212120122436.872453.1333.633.6()LLLLRjXRjXZjRjXRjX于是,可将原电路等效为附图(c)。1I2I1R1LX2RSU2LX+-ocU1R1LX2R2LXIZocU+-0Z(a)(b)(c)题9-12附图所以(1)当33.6Z时,流经其中的电流为0961.28116.6()33.633.633.6ocUjIAZZj(2)设ZRjX当033.633.6(33.6)(33.6)ZZjRjXRjX的模最小时,电流I最大,由此可得0R33.6X即33.6()Zj时,电流I最大。9-13解:以CU为参考,即10CCCUjXIU则1500CCURIUIU因为U与I同相,所以CU与U同相,即5021005030600CUUI1490CCUIjX21553.13III所以221253.137.29.6CLUZRjXjI即27.2()R9.6()LX9-14解:使用戴维南定理,先移去0R支路,这时电路如附图(a)所示,由电路可得1211()35135SCSocSCCRURjXUjUUUURjXRRjXRj其次,根据附图(b)求等效阻抗oZ11011()()8(55)80802()855135CCCCRRjXRRjXjjZRRjXRRjXjj于是,可将原电路等效为附图(c)。ocU1RCXSU+-CX1RRR1RCXCX1RRR0I0RocU+-0Z(a)(b)(c)题9-14附图于是,可求得0000358080(135)ocSUjIUZRjRj即00035(8013)(805)SIjURjR设0I与SU的相位差为,而008055arctanarctan38013RR要使90,应有008055arctanarctan90593180133RR所以有00805tan310.68013RR可得011.43()R9-15解:以2U为参考相量,即220UU,则由电路图可知:2I滞后于2U90,3I超前于2U90,即22903090II33902090II所以1233020101090IIIjjj又因为211000()PRIW所以221100010()10PRI而由于221111()()URIXI所以2222111221()(1002)(1010)10()10URIXI由图知111()(1010)1090100245URjXIj而1cosPUI,即11000cos0.454522010PUI,arccos0.454563,则可知U超前于1I63,而由于1I滞后于2U90,所以U滞后于2U27,即2722027UU则得0021022027100245(196100)(100100)960UUUjj所以222963.2()30UXI233964.8()20UXI9-16解:由各表读数可知1220()UV,264()UV,2()IA,整个电路吸收的功率为1400()PW,复阻抗222LZRjX吸收的功率为2100()PW则由222PRI可得22210025()4PRI又2222226432()2LUzRXI所以2222222322519.97()LXzR同理,由2112()PRRI可得1122400100()4PRRI又,整个电路的阻抗1222112220()()110()2LLUzRRXXI所以12222212()11010045.83()LLXXzRR于是有121001002575()RR12
本文标题:电路分析基础习题解答
链接地址:https://www.777doc.com/doc-3279468 .html