您好,欢迎访问三七文档
蒸发式冷凝器概况(推荐使用)强福悦一、蒸发式冷凝器的工作原理蒸发式冷凝器是制冷、空调系统中的主要热交换设备,其工作原理是:制冷、空调系统中压缩机排出的制冷剂高压过热气体经过蒸发式冷凝器中冷凝排管,使高压高温气态的制冷剂与排管外的喷淋水和空气进行热交换。即气态制冷剂由上部进气口进入冷凝排管后自上而下逐渐被冷凝成为液态制冷剂。其上部配套引风机的超强风力使喷淋水完全均匀地覆盖在冷凝排管的表面,水借风势极大地提高了换热效果。温度升高的喷淋水有一部分吸热后蒸发为气态,利用水的汽化潜热由引风机带走大量的热量,水蒸气中的水滴被高效脱水器挡住,并与其它吸收了热量的水,散落到PVC淋水片的热交换层中,被流经的空气冷却后温度降低进入底部水箱,再经循环水泵继续进行循环,在冷凝过程中蒸发掉的水份由水位调节浮球控制器自动给予补充。二、蒸发式冷凝器的安装(一)介绍制冷系统的目的是把热量从一空间或物体中移走,然后再以某种方式将此热量排放到环境中。在制冷系统中要用冷凝器来排放热量。蒸发式冷凝器实质上就是水冷式冷凝器与风冷式冷凝器两者的结合,通过流经冷凝盘管表面水的蒸发由水蒸汽带走热量而完成热交换的。对于大多数制冷与空调系统而言,蒸发式冷凝器具有节省费用的突出优点。它们排除了水冷式系统中水泵的问题和大量用水而产生的水处理问题。与具有同等制冷量和成本的风冷式冷凝器相比,它们的风机功率要小很多。最重要的是,采用蒸发式冷凝器的制冷、空调系统,其冷凝压力可以比传统的水冷式或风冷式更低一些。这样,压缩机所消耗的功率就减少一些。(二)制冷系统12相应的传热过程是从蒸发器中出来的带有一些过热度的制冷剂蒸汽进入到压缩机后,被压缩到冷凝压力,吸气过热度的大小与蒸发器的型号和当气体从蒸发器到压缩机的吸气管路中流过时从环境中所吸收的热量有关。被压缩后的过热蒸汽进入到排热装置(冷凝器),并在此装置中过热被迅速排走,并很快达到饱和状态,其间冷凝压力恒定,直至制冷剂达到饱和液态。在蒸发式冷凝器的出口附近的液体制冷剂或许有一些过冷,但这很快就在从冷凝器到贮液器的排液管中散失掉。在排液管与贮液器中既含有制冷剂液体又有制冷剂蒸汽,它们处于两相共存的状态,所以不可能使制冷剂液体的温度保持在饱和温度以下。因此,一小部分过冷液体要来冷凝一部分制冷剂蒸汽直到在一个相当于冷凝压力的饱和温度达到平衡。制冷剂液体经过节流装置(节流阀)在焓值保持不变的情况下,压力降到系统吸气压力进入到蒸发器内蒸发吸热进行有效的制冷循环过程。(三)制冷排热系统1、一次性用水冷凝系统:因为水在表面上看来是取之不尽,用之不竭的资源,加上它的稳定性和良好的传热特性,所以长久以来,一直被人们用作制冷与空调系统中散热的主要介质。最简直的散热系统就是一个采用城市水、井水或地表水源直接流过制冷系统中的冷凝器,然后再把水排放到下水道、再回到地表水源。冷凝器所放出的热量取决于水的温和水的流量。对于每冷吨平均散热量为4.4KW和水的温升为11.1℃的冷凝器来说,每冷吨将浪费5.7L/min的水。这种一次性用水系统,过去曾经在制冷系统中被普遍采用,然而由于用水费用和排污费用的增加以及热污染的限制,这种用水方式已被淘汰,不允许再采用了。2、壳管式冷凝器和冷却塔系统:在一次性用水系统上最初的改进产品之一是冷却塔,冷却塔可使冷却水被循环使用,这样节约了水源。在冷却塔中,来自于冷凝器中的热水与空气接触,并3456且一小部分水蒸发成水蒸汽,每0.45㎏的蒸发水大约要从循环水中带走252Kcal的热量。因此对于每冷吨制冷量来说只需要0.114L/min的水,这样理论上就节省了98%的一次性用水系统中所浪费的水量。然而在实际运行当中,必须放掉一小部分水来控制循环水中的杂质,所以实际节省了大约95%的水。从冷却塔中出来的水温是由环境空气中的湿球温度决定的。在大多地区所采用的湿球设计温度应使从冷却塔出来的水温比井水水温和地面水源水温要高。因此弥补较高的冷却水温和由冷却塔所带来的热交换的附加环节,冷凝器的循环水量和设计冷凝温度与一次性用水型系统相比较都必须相应增加。在氨制冷系统中,当冷凝温度为37.8℃,湿球温度为25.6℃,水的温升为3.3℃时每冷吨制冷量最少需要18.9L/min的循环水。由于水泵必须使水在壳管式冷凝器、冷却塔和管路中循环,所以就需要相对较高的扬程。氟里昂制冷系统的冷凝温度比氨系统通常被设计的稍高一点,这样就会使通过冷凝器水的温升高一点,并相应增加压缩机的功耗。对应于氨系统中所要求的每冷吨18.9_22.7L/min的水循环量来说,氟里昂系统中每冷吨需要11.4L/min水的循环量。3、风冷式冷凝器风冷式冷凝器是用于制冷及空调系统中的一种散热装置,由于它不使用蒸发式的原理,风冷式冷凝器的冷却量就取决于环境的干球温度。而设计干球温度通常比设计的湿球温度高8.3℃-13.9℃。因此使用风冷式冷凝器的冷凝温度要比使用蒸发式冷凝器的冷凝温度高出许多,这样将导致压缩机功耗的增加。风冷式冷凝器是通过流经空气的显热变化带走热量,由于空气的比热较低,所以要求空气的流量很大(大约是蒸发式冷却装置的4倍),相应的就需要较大的风机功率和较大的迎风面积。使用风冷式冷凝器可以避免使用水源,但这是以消耗更多的压缩机和冷凝器功耗为代价的。4、蒸发式冷凝器蒸发式冷凝器从制冷和空调系统中带走热量,78但其消耗的能量和水量最少,水泵将水从集水槽送到喷淋系统中,通过喷嘴喷淋到冷凝盘管表面,确定水的最小流量应能保证喷淋水完全覆盖冷凝器盘管表面,喷淋水分布均匀和防止结垢就足够了,由此可确定水泵的最小功率。风机系统强迫空气穿过下落水和盘管的表面,一小部分水被蒸发后带走制冷剂蒸气中的热量并将盘管内的制冷剂蒸气冷凝,因此就像冷却塔一样,所有的散热都是通过水的蒸发来完成的,这样就节省了大约95%的通常由一次性用水系统所需的水量。蒸发式冷凝器实际上就是把冷却塔和壳管式冷凝器结合在同一设备中。它去掉了在冷却塔/壳管式冷凝器系统中所必须的冷凝水的显热传热过程。这样就允许冷凝温度大体上接近设计湿球温度,从而使压缩机功率消耗最小。水的温度和水流量是在指定设计的湿球温度条件下,是以氨和氟为制冷剂的制冷和空调系统中普遍采用的,这些条件有助于选择最经济的蒸发式冷凝器。然而,在同等的湿球温度下,使用一个较大的其它类型的冷凝器,也可以获得较低的冷凝温度和降低压缩机消耗功率。蒸发式冷凝器相对其它冷凝系统具有以下主要优点:1、系统运行费用低冷凝温度在湿球设计温度8.3℃以内是非常实际和经济的,其结果是压缩机功率比其它的冷却塔/冷凝器系统节省至少10%的功耗,并且比风冷式冷凝器系统节省30%的功耗,风机的功率与冷却塔/冷凝器系统的风机消耗的功率相当,并且大约是相同规格的风冷式冷凝器风机功率的1/3。由于泵的扬程较低和水流量的降低,水泵的功率大约是普通的冷却塔/冷凝器系统中所需要的水泵功率25%。2、节省初投资蒸发式冷凝器把冷却塔、冷凝器、循环水池、循环水泵和水管综合为一体,这样减少了冷却塔、循环910水泵和水管等设备,也减少了冷却塔/冷凝器系统中处理与安装单个元件的费用。由于蒸发式冷凝器高效率地利用蒸发式冷却换热方式,所以能有效地减少换热面积、风扇的数量和风机电机功耗。3、节省空间蒸发式冷凝器通过把冷凝器盘管和冷却塔结合成一体节省了宝贵的空间,并且没必要向冷却塔/冷凝器系统那样需要较大的水泵与管路。蒸发式冷凝器只要求大约是相同规格的风冷式冷凝器的50%的迎风面积。(四)蒸发式冷凝器设计与安装建议冬季运行大多数蒸发式冷凝器都是常年运行的,所以必须考虑在环境温度降到0℃以下时循环水的防冻问题。通常可采用以下几种方法。1、设置集水槽最令人满意的方法就是使用一个带有喷淋水循环水泵且位于一个加热空间之内的集水槽。一个典型的带有远置集水槽的蒸发式冷凝器,任何时候只要当循环水泵停止工作,冷凝器水盘中所有的水就排放到室内水槽中。那么室内的水槽大小必须能够为水泵提供足够的吸程,并提供一个高于此运行水位的缓冲容积来容纳当水泵关闭的时候流回的所有的水,这包括在正常运行期间冷凝器的水和冷凝水盘里的水,再加上冷凝器与水槽之间管路中的水。在远置集水槽应用中,必须选择能达到所要求的水流量和所要求的整个压头的循环水泵,这整个压头包括垂直扬程、管的沿程压力(从供水到回水)加上在水分配系统进水集管中所要求的压力。在泵的排水管中必须装上调节阀来调节进入冷凝器的水流量。2、水盘电加热器有时,由于蒸发式冷凝器摆放位置空间的限制,不能使用远置贮水池,可以在冷凝器水盘里安装电加热器来防止当冷凝器停止运行时在较低的环境温度下出现冰冻现象。并且泵的吸水管路和泵的排水管路(一1112直到溢流接口处)上都应包上带电热丝的胶带并外裹保温层。3、干式运行在冬季运行时,制冷负荷和环境空气温度都远远低于设计工况。蒸发式冷凝器可以在没有水循环的情况下干式运行。这将减少设备的负荷也减少了能耗。蒸发式冷凝器的干式运行被作为一种季节性使用方法。并且不能采用水泵的开停来作为能量调节方式。由于是否使用循环水对冷凝能力的影响很大,而且此种控制方法又会造成循环水泵的启动与停止过于频繁,冷凝盘管的交替润湿和干燥将会促进冷凝盘管表面水垢的形成。当设备冷水水盘中储存有冷凝水时,蒸发式冷凝器在半结冻的环境温度下将不能使用干式运行。即使使用电加热器对水盘水管进行防冻处理,流动的冷空气还会使水盘中的水结冰。电加热器设计时只有当风扇和水泵全部关闭时才能防止结冻,此外,风扇所带动的气流的喘流也吹动设备内的水,从而造成水盘水表面结冰。在使用干式运行时要完全排空水盘中的水。4、冷凝器配管蒸发式冷凝器在制冷系统中运行的好坏,一方面取决于它本身性能,另一方面取决于它的配管。蒸发式冷凝器的配管主要包括从压缩机的排气端到冷凝器制冷剂进口端之间的管路和从冷凝器制冷剂出液口到高压贮液器进口端之间的管道。人们在长期的配管实践中逐步掌握了一些规律,并加以整理而成为蒸发式冷凝器的配管原则。压缩机排气管的尺寸大小应反映出压缩机与冷凝器之间的设计压降允许值。通常认为每30m当量管长的压力降相当于损失0.56℃冷凝温度。这0.56℃损失就是在ASHRAE(美国、采暖、制冷、空调工程学会)基础手册中管路容量表的设计基础。对于紧密相联的系统来说,建立在0.56℃冷凝压力损失基础上来选择管路尺寸,就可忽略压缩机排气端压力与冷凝器进口端压力之间的压差。然而,如果排气管路很长或按更大的压力降来确1314定管路尺寸,那么在选择压缩机与冷凝器时必须把实际的压力损失考虑进去。举个例子来说,压缩机排气压力为1275.9KPA,排气管路的总的压降为41.4KPA的氨系统将要求所选的冷凝器的冷凝温度为34.6℃(1234.5KPA)而不是35.7℃(1275.9KPA)。在使用蒸发式冷凝器的离心式压缩机系统中排气管路的损失就尤其重要。离心式压缩机具有苛刻的压头特性并且在选择压缩机与冷凝器时必须仔细考虑排气管路的压力降。制冷系统中贮液器为随着系统容量变化时造成的高压侧与低压侧制冷剂量的波动提供一个平衡容积。要允许制冷剂在冷凝盘管里自由地流动而不允许滞存在冷凝盘管里而造成冷凝器的容量损失。那么,要想让制冷剂在冷凝器的盘管里能顺利的流动,(除了盘管本身沿着制冷剂的流动方向具有适当的向下坡度外),贮液器必须与系统的某个高压侧的某个部位平衡,这种平衡通过一个外部的平衡管来实现。当通过制冷剂排液管路达到平衡时,在这种情况下,贮液器是上进口,管路中没有存液弯,这时应按满负荷时最大液体制冷剂流速为0.5m/s来设计管路尺寸。另外,排液管应朝向贮液器设计2%的坡度。这样可保证贮液器中的压力与冷凝盘管出口处的压力平衡,使得从冷凝器出来的液体自由的流入贮液器。贮液器与盘管出口之间的压力平衡不能通过排液管得到。必须从贮液器顶部到冷凝器盘管出口之间另外连接一条平衡管。因此排液管路可按0.5m/s-0.76m/s的制冷剂流速来确定尺寸。配管方式应遵循规则是:1、压缩机排气管的最高点装有放气阀,垂直管段上按一个检修阀。2、从冷凝器出来的排液管在水平管段上装放气阀和安全阀,且有
本文标题:蒸发式冷凝器概况
链接地址:https://www.777doc.com/doc-3291638 .html