您好,欢迎访问三七文档
INSTITUTEOFPHYSICSPUBLISHINGJOURNALOFPHYSICSA:MATHEMATICALANDGENERALJ.Phys.A:Math.Gen.36(2003)2945–2962PII:S0305-4470(03)40067-XRandommatrixtheoryandthezerosofζ(s)FrancescoMezzadriSchoolofMathematics,UniversityofBristol,UniversityWalk,Bristol,BS81TW,UKE-mail:f.mezzadri@bristol.ac.ukReceived30July2002,infinalform5November2002Published12March2003Onlineatstacks.iop.org/JPhysA/36/2945AbstractWestudythedensityoftherootsofthederivativeofthecharacteristicpolynomialZ(U,z)ofanN×NrandomunitarymatrixwithdistributiongivenbyHaarmeasureontheunitarygroup.BasedonpreviousrandommatrixtheorymodelsoftheRiemannzetafunctionζ(s),thisisexpectedtobeanaccuratedescriptionforthehorizontaldistributionofthezerosofζ(s)totherightofthecriticalline.WeshowthatasN→∞thefractionoftherootsofZ(U,z)thatlieintheregion1−x/(N−1)|z|1tendstoalimitfunction.Wederiveasymptoticexpressionsforthisfunctioninthelimitsx→∞andx→0andcomparethemwithnumericalexperiments.PACSnumbers:02.10.Yn,02.10.De1.IntroductionWestudythedensityoftherootsofZ(U,z)=ddzdet(Iz−U)=ddzNj=1(z−eiθj)z∈CwhereUisarandomN×Nunitarymatrix,withrespecttothecircularunitaryensemble(CUE)ofrandommatrixtheory(RMT).OurmainmotivationistoinvestigatethehorizontaldistributionofthezerosofthederivativeoftheRiemannzetafunction.Thezetafunctionisdefinedbyζ(s)=∞n=11nsσ=Re(s)1andhasananalyticcontinuationintherestofthecomplexplaneexceptforasimplepoleats=1.Thereareinfinitelymanynon-trivialsolutionstotheequationζ(s)=0inthestrip0σ1;theRiemannhypothesis(RH)statesthattheyalllieonthecriticallineσ=1/2.Theinterestinthehorizontaldistributionofthezerosofζ(s)ismotivatedbyitsconnection0305-4470/03/122945+18$30.00©2003IOPPublishingLtdPrintedintheUK29452946FMezzadriwithRH.In1934Speiser[1]showedthatRHisequivalenttoζ(s)havingnozerosintheregion0σ1/2.Furthermore,uptonowthemostefficientwaysofcomputingthefractionofthezerosoftheRiemannzetafunctiononthecriticallinearebasedonwhatisknownasLevinson’smethod[2];itturnsoutthatthezerosofζ(s)closetothecriticallinehaveasignificanteffectontheefficiencyofthistechnique[3],thereforeitisimportanttoknowhowtheyaredistributed.LevinsonandMontgomery[4]provedaquantitativerefinementofSpeiser’stheorem,namelythatζ(s)andζ(s)haveessentiallythesamenumberofzerostotheleftofσ=1/2,andshowedthatasT→∞,whereTistheheightonthecriticalline,apositiveproportionofthezerosofζ(s)areintheregionσ12+(1+)loglogTlogT0.SubsequentimprovementsofLevinsonandMontgomery’sresults,firstbyConreyandGhosh[3],thenbyGuo[5],Soundararajan[6]andrecentlybyZhang[7]haveestablishedthatatypicalzeroofζ(s)tendstobemuchclosertothecriticallineandthatconditionallyonRHapositiveproportionlieintheregionσ12+ClogTforsomepositiveconstantC.Theirdistribution,however,isstillunknown.Otherresultsonthezerosofζ(s)canbefoundin[8].Overthepastthirtyyears,overwhelmingevidencehasbeenaccumulatedwhichsuggeststhatthelocalcorrelationsofthenon-trivialzerosofζ(s)coincide,asT→∞,withthoseoftheeigenvaluesofHermitianmatricesoflargedimensionsfromtheGaussianunitaryensemble(GUE)[9].AsN→∞,theGUEstatisticsareinturnthesameasthoseofthephasesoftheeigenvaluesofN×Nunitarymatrices,onthescaleoftheirmeandistance2π/N,averagedovertheCUEensemble.Morerecently,however,itwasrealizedthatRMTnotonlydescribeswithhighaccuracythedistributionoftheRiemannzeros,butalsoprovidestechniquestomakepredictionsandcomputationsabouttheRiemannzetafunctionandcertainclassesofL-functionsthatpreviousmethodshadnotbeenabletotackle.ThisstartedwiththeworkofKeatingandSnaith[10]onmomentsoftheRiemannzetafunctionandotherL-functions.Theirkeyobservationwasthatthelocallydeterminedstatisticalpropertiesofζ(s)highupthecriticallinecanbemodelledbycharacteristicpolynomialsZ(U,z)ofrandomunitarymatricesU.Inthismodelthetwoasymptoticparameters,Tforζ(s)andNforU,arecomparedbysettingthedensitiesofthezerosofζ(s)andoftheeigenvaluesofUequal,i.e.N=logT2π.Thisapproachhassincebeenextremelysuccessful[11].Followingthesameideas,inthispaperwesuggestthatthedensityρ(z)oftherootsofZ(U,z)willaccuratelydescribethedistributionofthezerosofζ(s).Aclassicaltheoremincomplexanalysisstatesthatifp(z)isapolynomial,thentherootsofp(z)thatarenotrootsofp(z)lieallintheinteriororontheboundaryofthesmallestconvexpolygoncontainingthezerosofp(z)(see,e.g.,[12]).Therefore,sincetheeigenvaluesofaunitarymatrixhavemodulusone,thesolutionsoftheequationZ(U,z)=0thatarenotzerosofZ(U,z)areallinsidetheunitcircle.Ifs=1/2+it+u,t∈R,denotesthepointatwhichζ(s)isevaluated,thentheregionofCtotherightofthecriticallineismappedinsidetheunitcirclebytheconformalmappingz=e−u.Thus,theradialdensity2π0|z|ρ(z)dφRandommatrixtheoryandthezerosofζ(s)2947becomestheanalogueofthehorizontaldistributionofthezerosofζ(s)totherightofthelineσ=1/2.However,insteadofρ(z),itturnsouttobemoreconvenienttoconsiderIp(x),thefractionoftherootsintheannulus1−x/(N−1)|z|1,wherexisthescaleddistancefromtheunitcircle.OurmainresultsconcerntheasymptoticsofIp(x).WeshowthatasNincreasestherootsofZ(U,z)approachtheunitcircle,andIp(x)tendstoafunctionindependentofN.Furthermore,weobtainthefollowingasymptoticsasN→∞:Ip(x)∼1−1/xx→∞
本文标题:INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS
链接地址:https://www.777doc.com/doc-3295027 .html