您好,欢迎访问三七文档
OnAutocorrelationinaPoissonRegressionModelRichard.A.Davis1ColoradoStateUniversityWilliam.T.M.DunsmuirUniversityofNewSouthWalesandYingWangColoradoStateUniversityMay22,1998AbstractThispaperisconcernedwithdevelopingapracticalapproachtodiagnosingtheexistenceofalatentstochasticprocessinthemeanofaPoissonregressionmodel.First,arigorousderivationoftheasymptoticdistributionofstandardGLMestimatesisderivedforthecasethatanautocorrelatedlatentprocessispresent.Simpleformulaeforthee ectofautocovarianceonstandarderrorsoftheregressioncoe cientsarealsoprovided.Second,thepaperexaminestestsforthepresenceofalatentprocessandconsidersestimatesoftheautocovarianceofthelatentprocess.Methodsforadjustingfortheseverebiasinpreviouslyproposedestimatorarederivedandtheirbehaviourinvestigated.ApplicationsofthemethodstotimeseriesofmonthlypoliocountsintheU.S.anddailyasthmapresentationsatahospitalinSydneyareusedtoillustratetheresultsandmethods.1IntroductionInthispaperweareconcernedwithmodelsforatimeseriesofobservedcounts,fYt:t=1;:::;ngwhichhavemeanfunctionspeci edbyalinearpredictormodi edbya\latentpro-cess.SuchmodelshavebeenconsideredbyZeger(1988),Campbell(1994),BrannasandJohansson(1994)andChanandLedolter(1995)forexample.Therehasbeenconsiderablee ortinrecentyearsdevotedtothedevelopmentofmethodstoe ciently talltheparametersinthesetypeofmodels.Howeverallofthesetechniquesrelyontheidenti cationofasuitablemodelforthecorrelationstructureinthenoiselatentprocess.Asinlinearregressionwithcorrelatederrorsthereisaneedfordiagnostictechniqueswhichcanbeappliedtodecideifitisnecessarytoincludealatentprocessinthespeci cationofthemeanofthePoissoncountsandifso,isthereanyevidenceofautocorrelationinsuchaprocess.Thispapertakesapracticalperspectivetothemodellingoftimeseriesofcountsand,tosomeextent,followsmodellingapproachesthathaveprovedsuccessfulinlinearregression.Tobepreciseweconsiderthesituationforwhichthereisanon-negativetimeseries tsuchthatYtj t;xtsP( t t);(1.1)1ThisresearchsupportedinpartbyNSFDMSgrantNo.9504596where t=exTt inwhichxtisap-vectorofobservedregressorsand =( 1; ; p)Tisavectorofregressioncoe cients.The rstcomponentofxtisassumedthroughouttobeunitysothattheregressioncomponentalwaysincludesaninterceptterm.Itisfurtherassumedthatf tgisanon-negativestationarytimeserieswithE( t)=1,variance 2 ,autocovariancefunction(ACVF) (h)=E[( t 1)( t+h 1)]andautocorrelationfunction(ACF) (h)= (h)= 2 .Theunitmeanconditionisimposedforidenti abilityreasons;otherwise,ifE( t)6=1,thenthemeancouldbeabsorbedintotheintercepttermofthelinearregression(see,forexample,ChanandLedolter,1995,p.247).Theabovespeci cationofalatentprocessisthatsuggestedinZeger(1988)andusedinCampbell(1994).Analternative,usedinChanandLedolter(1995)isYtj t;xtsP(e t+xTt );where tisalatentprocesswhichisassumedtobeastationaryGaussianprocesswithmean ,variance 2 andautocovariancefunctiongivenby (h)=E[( t )( t+h )].WithappropriatechoiceofmeanandvariancethisisthespecialcaseoftheZeger(1988)speci cationinwhichthe thavealog-normaldistribution.Inparticular,inordertosatisfytheidenti abilityrequirementthatE( t)=E[exp( t)]=1itisrequiredthat tsN( 2 =2; 2 ).Notethat,forthischoiceofmeanandvarianceinthelog-normaldistribution, (h)=exp( (h)) 1forallh.Theregressorsxtmaydependonnandsoformatriangulararray.Aswillbemadeclearlaterthisisoftenrequiredinorderforthe\informationmatrixassociatedwiththeestimationproceduretodivergeasn!1.Forexampleifalineartimetrendisincludedinthemodel,thenitisnecessarytodividetimebythesamplesizen(e.g.xt=t=n)inordertoallowforthecasewherethetrendcoe cientmightbenegative(inwhichcasethePoissonmeanwilleventuallybecomearbitrarilyclosetozero).Zeger’streatmentoftheabovemodelisbasedonaquasi-likelihoodapproachusedtocorrectforserialcorrelationinthelatentprocessf tg.Assumptionsonthedistributionalpropertiesofthisprocessarenotexplicitlystatedbutformuchofhistreatmentthesearenotrequired.Howeverforthealternativespeci cationintermsofthef tgprocesstherequirementthatthesebenormallydistributedismadequiteexplicitlyinthetreatmentinChanandLedolter(1995).Detectionofautocorrelationinthelatentprocessusingtheobservedcountprocess,Yt,isnotstraightforwardasweshowinSection2below.TypicallyuseoftheautocorrelationsforYtwillleadtounderestimatesofthetruesizeofautocorrelationinthelatentprocess t.ThisisnotedinZeger(1988).Also,inpractice,theregressiononxtwillneedtobeperformedbeforeattemptingtoestimatethisautocorrelation.Howeversuchestimationshouldadjustforautocorrelationinordertoarriveatcorrectinferences.Inordertotestfortheexistenceoflatentprocessandsubsequentlyidentifyitscorrelationstructure,itisnecessarytohaveaconsistentestimationprocedurefortheregressioncoe cientvector.Anaturalandeasywaytocomputesuchestimatesisobtainedfromperformingastandardgeneralisedlinearmodel(GLM)analysis.InSection3,weestablishtheconsistencyandasymptoticnormalityoftheGLMestimates^ whenastationaryautocorrelatedprocessispresentinthemeanofthePoissoncounts.Theseresultsareanalogoustolongstandingresultsforlinearregressionwithautocorrelatederrorsbutdi erinthat,whiletheor
本文标题:On Autocorrelation in a Poisson Regression Model
链接地址:https://www.777doc.com/doc-3295089 .html