您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 相似三角形的判定(sss)
1.定义法:两三角形对应角相等,对应边的比相等的两个三角形相似一、如何判断两三角形是否相似?∵DE∥BC∴△ADE∽△ABCDEABCABCDE2.平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。A型X型类似于判定三角形全等的方法,我们能不能通过三边来判断两个三角形相似呢?ACC'A'BCC'B'ABB'A'是否有△ABC∽△A’B’C’?ABCC’B’A’三边对应成比例推理论证:已知:在△ABC和△A′B′C′中,CAACCBBCBAAB求证:△ABC∽△A′B′C′B′A′C′BACED分析:△A′DE≌△ABC△A′DE∽△A′B′C′△ABC∽△A′B′C′?BAC要证明△ABC∽△A’B’C’,可以先作一个与△ABC全等的三角形,证明它△A’B’C’与相似.这里所作的三角形是证明的中介,它把△ABC△A’B’C’联系起来.已知:如图和△中,△ABC求证:△A`B`C`∽△ABC证明:在△ABC的边AB(或延长线)上截取AD=A′B′,A`B`C`ABCDE过点D作DE∥BC交AC于点E.又∴△ADE∽△ABC,∴∵∴.因此.∴△∽△ABC∴△ADE≌△ABCABACBCABACBCADAEDEABACBC,ADABADABABABABACBCABACBC,DEBCEACABCBCCACA,DEBCEACAABCABCABCC’B’A’ACC'A'BCC'B'ABB'A'△ABC∽△A’B’C’如果两个三角形的三组对应边的比相等,那么这两个三角形相似.简单地说:三边对应的比相等,两三角形相似.例1:''''''CAACCBBCBAAB∴.12'',10'',6'',6,5,3'''CACBBAACBCABCBAABC否相似,并说明理由。是和根据下列条件,判断21126'',21105'',2163''CAACCBBCBAAB∵∴ABC∽'''CBA解:例1:根据下列条件,判断△ABC与△A’B’C’是否相似,并说明理由.AB=4cm,BC=6cm,AC=8cm,A’B’=12cm,B’C’=18cm,A’C’=21cm..''''''.218'',31186'',31124'')2(CAACCBBCBAABCAACCBBCBAAB△ABC与△A’B’C‘的三组对应边的比不等,它们不相似.要使两三角形相似,不改变的AC长,A’C’的长应改为多少?1.根据下列条件,判断△ABC与△A’B’C’是否相似,并说明理由:AB=10cm,BC=8cm,AC=16cm,A’B’=16cm,B’C’=25.6cmA’C’=12.8cm.2.图中的两个三角形是否相似?答案是2:1不相似,请说明理由。,求出相似比;如果它们相似吗?如果相似,和如图在正方形网格上有222111ACBACB牛刀小试:1.根据下列条件判断△ABC与以D、E、F为顶点的两个三角形是否相似。(1)AB=3,BC=4,AC=6;DE=6,EF=8,DF=12(3)AB=3,BC=4,AC=6;DE=6,EF=9,DF=12(2)AB=3,BC=4,AC=6;DE=6,EF=8,DF=12△ABC∽△DEF△ABC∽不相似△EDFDE=6,EF=12,DF=8△ABC∽△DEFABCEDF34668122如图,判断4×4方格中的两个三角形是否相似,并说明理由.EDFBAC,如图已知AEACDEBCADAB试说明∠BAD=∠CAE.ADCEBABBCACADDEAE证明∴ΔABC∽ΔADE∴∠BAC=∠DAE∴∠BAC━∠DAC=∠DAE━∠DAC即∠BAD=∠CAE求证:三角形的三条中位线所组成的三角形与原三角形相似。已知:DABCEF求证:如图,DE,DF,EF是△ABC的中位线△ABC∽△FED证明:∵DE,DF,EF是△ABC的中位线∴DE=BC,DF=AC,EF=AB212121ABEFACDFBCDE∴21∴△ABC∽△DEF已知:DABCEF如图,DE,DF,EF是△ABC的中位线。(1)请找出图中的相似三角形。BCDE//ADEABC∽ACDF//BDFBAC∽ABEF//CEFCAB∽ADEABC∽DBFEFC∽∽FED∽①4:2=5:x=6:y②4:x=5:2=6:y③4:x=5:y=6:2要作两个形状相同的三角形框架,其中一个三角形的三边的长分别为4、5、6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?4562
本文标题:相似三角形的判定(sss)
链接地址:https://www.777doc.com/doc-3299815 .html