您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 数据通信与网络 > 信息科学与电子工程专业英语 全文译文
1Unit1电子学:模拟和数字Unit1-1第一部分:理想运算放大器和实际限制为了讨论运算放大器的理想参数,我们必须首先定义一些指标项,然后对这些指标项讲述我们所认为的理想值。第一眼看运算放大器的性能指标表,感觉好像列出了大量的数值,有些是陌生的单位,有些是相关的,经常使那些对运放不熟悉的人感到迷惑。对于这种情况我们的方法是花上必要的时间有系统的按照列出的次序阅读并理解每一个定义。如果没有对每一项性能指标有一个真正的评价,设计人员必将失败。目标是能够依据公布的数据设计电路,并确认构建的样机将具有预计的功能。对于线性电路而言,它们与现在的复杂逻辑电路结构相比看起来较为简单,(因而在设计中)太容易忽视具体的性能参数了,而这些参数可极大地削弱预期性能。现在让我们来看一个简单但很引人注意的例子。考虑对于一个在50kHz频率上电压增益为10的放大器驱动10k负载时的要求。选择一个普通的带有内部频率补偿的低价运放,它在闭环增益为10时具有所要求的带宽,并且看起来满足了价格要求。器件连接后,发现有正确地增益。但是它只能产生几伏的电压变化范围,然而数据却清楚地显示输出应该能驱动达到电源电压范围以内2到3伏。设计人员忽视了最大输出电压变化范围是受频率严格限制的,而且最大低频输出变化范围大约在10kHz受到限制。当然,事实上这个信息也在数据表上,但是它的实用性并没有受到重视。这种问题经常发生在那些缺乏经验的设计人员身上。所以这个例子的寓意十分明显:在开始设计之前总要花上必要的时间来描写全部的工作要求。关注性能指标的详情总是有益的。建议下面列出的具体的性能指标应该考虑:1.在温度,时间和供给电压下的闭环增益的精确性和稳定性2.电源要求,电源和负载阻抗,功率消耗3.输入误差电压和偏置电流,输入输出电阻,随着时间和温度的漂移4.频率响应,相位偏移,输出变化范围,瞬态响应,电压转换速率,频率稳定性,电容性负载驱动,过载恢复5.线性,失真和噪声6.输入,输出或电源保护要求,输入电压范围,共模抑制7.外部补偿调整要求不是所有的指标项都是有关的,但要记住最初就考虑它们会更好,而不要被迫返工。所有参数可以大范围变化不要忽略这样一个事实。有多少次是在用典型值设计好电路后发现(该电路)只是因为使用的器件不典型而不能工作?这就提出一个棘手的问题:在设计中何时应该使用典型值,何时应该使用最不利值?这是经验丰富的设计人员也必须进行的判断。显然,如果某些性能要求是强制性的,则一定要用最不利情况下的数值。然而在许多情况下某一规定性能是否可以取得将在易实现性,重要性,经济性之间取得折中。2不超指标设计或超安全标准设计最后,我们将受制于价格因素,因为杀鸡用牛刀实在是没有意义的。简单极为重要,因为用较少元器件实现(的电路)总是更便宜也更可靠。作为最不利情况设计的例子,考虑一个低增益直流传感器放大器,要求将电压源输出的10mV信号放大,产生1V的输出,在0~70C范围内达到1%的精度。注意,性能要求是1%的精度。这就是指输出必须在0~70C温度范围内控制在1V10mV的限度内。第一步,当然是考虑前面的列表,并决定其中哪些参数是有关的。对这样(非常有限)的参数,两项最重要的指标是电压偏移和对于温度的增益稳定性。我们假设所有的起始误差可以忽略不计(这在实际中是几乎不可能的)。经验丰富的设计人员会知道大多数运放具有极大的开环增益,经常远大于10000。闭环增益1%的变化意味着环路增益(将在下面说明)的变化在闭环增益为100时应该小于100%。很明显这将十分容易实现,设计人员会立刻知道计算中他可以使用开环增益的典型值。但是,补偿电压偏移却有所不同。许多运放技术指标仅仅给出补偿电压偏移的典型值,这很可能会在5V/C的数量级,而未给出任何器件可以达到的最大值30V/C。如果我们碰巧使用的是一个有最不利偏移的器件,那么放大器随温度而产生的误差可为2.1mV,占所有误差源所产生的总的允许误差的相当大一部分。这就是我们可以肯定可使用开环增益典型值的情况,不过最大漂移很可能导致相当大的误差。在仔细的设计中这种判定是必要的,而且理解厂商的数据要更加仔细。这种考虑必须推广到前面列出的所有详细资料,除了最不利值通常是不会注明的。经常发现(技术规格表上)给出的值并非是经过100%测试的。例如,采用统计测试可以保证90%的器件的性能在给定范围之内。对于某些用户可能很不方便,他们依赖于技术指标所给出的性能,而随后发现却有“另外”10%的器件被用在了他们的电路中。Unit1-2第二部分:数据寄存器和计数器数据寄存器数据寄存器是寄存器中最简单的类型,它可以用来暂时存放数据的一个“字”。其最简单的形式是由共用一个时钟的一组N个D触发器组成。N比特数据字中的所有位数通过N条数据总线连接数据寄存器。图1.1显示了一个由四个D触发器实现的四位数据寄存器。由于所有触发器同时改变状态,所以这种数据寄存器称为是同步器件。图1.1四位D寄存器移位寄存器用于计算机和许多其它类型逻辑电路的另一种普通寄存器是移位寄存器。它就是一组触发器(通常是D锁存器或RS触发器)联在一起,使其中一个触发器的输出成为下一个的输入,依此形成一3串。它称为移位寄存器,因为数据在每一个时钟脉冲的作用下通过寄存器移动一位。图1.2显示了一个由D触发器实现的四位移位寄存器。图1.2四位串行输入串行输出的移位寄存器在第一个时钟脉冲的前沿,“DATA”输入端的信号被锁存在第一个触发器中。在下一个时钟脉冲的前沿,第一个触发器的内容被存放到第二个触发器中,而出现在“DATA”输入端的信号则存放在第一个触发器中,依此类推。由于每次有一位数据进入,因此被称为串行输入移位寄存器。由于仅有一个输出,每次从移位寄存器输出1比特数据,因此也称为串行输出移位寄存器。(移位寄存器根据它们的输入输出方式命名,不是串行的就是并行的)。通过预置和清除触发器输入端可以提供并行输入。触发器的并行加载可以是同步的(也就是由时钟脉冲发生),或者异步的(不依赖于时钟脉冲),取决于移位寄存器的设计。如图1.3从每个触发器的输出端可以获得并行输出。图1.3四位串行输入并行输出的移位寄存器计算机与外设之间的通信一般都是串行的,而计算机内部的计算通常都是用并行逻辑电路来执行的。移位寄存器可以将信息从串行形式转换成并行形式,反之亦然。根据所要求的复杂程度,可以利用许多不同种类的移位寄存器。计数器——二进制数字的加权编码在某种意义上,移位寄存器可以看作是一种基于一元数字系统的计数器。可惜的是一个一元计数器在计数范围内对于每一个数字需要一个触发器。然而,一个二进制计数器只需要一个触发器就可以进行N位数据计算。一个简单的二进制加权计数器可用T触发器来构建。触发器依次相连,使一个触发器的输出作为下一个的时钟,依此类推。这样,触发器在链中的位置决定了它的权重,即对于二进制计数器而言就是它所对应的2的幂。如图1.4显示了一个由T触发器组成的三比特(模八)二进制计数器,图1.5是此电路的时序图。图1.4三比特二进制计数器图1.5三比特计数器时序图4注意,一组接在Q0,Q1,Q2上的灯泡将以二进制(模8)形式显示第一个脉冲以来已完成的完整时钟脉冲数。根据需要很多T触发器组合起来构成许多位数的计数器。注意在这种计数器中,每一个触发器在前一个触发器送来的脉冲下降沿改变状态。因此将略有时延,这是由一个触发器改变状态到下一个触发器改变状态之间的传播延迟造成的,即状态变化像波纹一样传过计数器,因而这些计数器被称为波纹计数器。就像波纹进位加法器一样,传播延时会对大数值计数器造成严重影响。可以通过制作或购买单片芯片计数器来实现计数器的递增计数、递减计数或者预置任何你想要的数字。一个计数器也可以构造出二—十进制、十二进制或者任何进制数的计数器。一个倒计数计数器可以通过将Q输出连接到前一级计数器的时钟输入来实现。利用预置和清零端,通过用与门将每一个T触发器的输出与另一个逻辑电平作逻辑运算(比方说0为倒计数,1为正计数),则可构成可预置的可逆二进制计数器。图1.6显示了一个没有预置和清零功能的可逆计数器。图1.6可编程可逆计数器同步计数器以上介绍的是异步计数器,这样叫是因为他们的状态随前一级的状态变化而变化,而非同时变化。一个触发器的输出是下一个的输入,因而状态的变化以波动形式通过各个触发器,所需时间与计数器的长度成正比。可以利用JK触发器来设计同步计数器,所有触发器同时改变状态,即时钟脉冲将同时送给每一级JK触发器。这很容易做到,对于二进制计数器,只要所有前面的数字都是1,任何给定的数字都会改变它的值(从1变为0,或者从0变为1)。图1.7显示了一个四位二进制同步计数器的例子。一个倒计数定时器可通过将Q输出端通过与门连接到J和K端实现。也可以设置预置和清零功能,像前一种一样,计数器也可以做成可编程的。图1.7四比特同步计数器同步计数器的时序图类似于异步(波纹)计数器,除了波动时间现在为零以及所有计数器的时钟同时输入之外。对于同步计数器而言,在时钟上升沿触发比在下降沿触发更为常见。5Unit1-3第三部分:锁相特性锁相环包含三个组成部分(图1.8):—相位检测器(PD)。—环路滤波器。—压控振荡器(VCO),其频率由外部电压控制。相位检测器将一个周期输入信号的相位与压控振荡器的相位进行比较。相位检测器的输出是它两个输入信号之间相位差的度量。差值电压由环路滤波后,再加到压控振荡器上。压控振荡器的控制电压使频率朝着减小输入信号与本振之间相位差的方向改变。当锁相环处于锁定状态时,控制电压使压控振荡器的频率正好等于输入信号频率的平均值。对于输入信号的每一周期,振荡器输出也变化一周,且仅仅变化一周。锁相环的一个显而易见的应用是自动频率控制(AFC)。用这种方法可以获得完美的频率控制,而传统的自动频率控制技术不可避免地存在某些频率误差。为了保持锁定环路所需的控制电压,通常要求相位检测器有一个非零的输出,所以环路是在有一些相位误差条件下工作的。不过实际上对于一个设计良好的环路这种误差很小。一个稍微不同的解释可提供理解环路工作原理的更好说明。让我们假定输入信号的相位或频率上携带了信息,并且此信号不可避免地受到加性噪声地干扰。锁相接收机的作用是重建原信号而尽可能地去除噪声。为了重建原始信号,接收机使用一个输出频率与预计信号频率非常接近的本机振荡器。本机振荡和输入信号的波形由相位检测器比较,其误差输出表示瞬时相位差。为了抑制噪声,误差在一定的时间间隔内被平均,将此平均值用于建立振荡器的频率。如果原信号状态良好(频率稳定),本机振荡器只需要极少信息就能实现跟踪,此信息可通过长时间的平均得到,从而消除可能很强的噪声。环路输入是含噪声的信号,而压控振荡器输出却是一个纯净的输入信号(的复本)。所以,有理由认为环路是一种传输信号并抑制噪声的滤波器。环路滤波器有两个重要的特性:其一是带宽可以非常窄,其二是滤波器能自动跟踪信号频率。自动跟踪和窄带的特点说明了锁相接收机的主要用途。窄带能够抑制大量的噪声,难怪锁相环路常用来恢复深深地淹没在噪声中的信号。历史与应用关于锁相的早期论述(思想)是Bellescize于1932年提出的,并在处理无线电信号同步接收中得到应用。20世纪20年代开始使用超外差接收机,但人们一直努力寻求更简单的接收技术。一种方法就是同步接收机或零差接收机。这种接收机本质上只是由一个本机振荡器,一个混频器和一个音频放大器组成。为了正常工作,必须调节振荡器使其输出频率与输入的信号载波频率完全一致,于是载波被变换成0Hz的“中频”。混频器输出含有解调出来的,由信号边带携带的信息。干扰与本地振荡器不同步,因此由干扰信号引起的混频器输出是一个拍音,可用音频滤波器加以抑制。对于同步接收,本振的正确调谐至关重要,任何一点频率误差都将严重损坏信号。此外,本振的相位必须与接收的载波相位一致,其间的误差限于周期的很小一部分。就是说,本振与输入信号之间必须实现相位锁定。6由于各种原因简单的同步接收机从未广泛应用过。现在锁相接收机几乎无例外地运用超外
本文标题:信息科学与电子工程专业英语 全文译文
链接地址:https://www.777doc.com/doc-3300916 .html