您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 18.2.1_矩形(公开课)
18.2.1矩形(1)18.2特殊的平行四边形Page2知识回顾:1.平行四边形具有哪些性质?Page3平行四边形的性质:1、边:平行四边形对边平行且相等。2、角:平行四边形对角相等,邻角互补。3、对角线:平行四边形的对角线互相平分。Page42.我们都知道三角形具有稳定性,平行四边形是否也具有稳定性?Page5CBADCBADCBAD3.在推动平行四边形的变化过程中,你有没有发现一种熟悉的、更特殊的图形?Page6Page7定义:有一个角是直角的平行四边形叫做矩形。BACDABCD有一个直角Page8生活中有很多具有矩形形象的物品,你能举出一些例子吗?说一说Page11Page12具备平行四边形所有的性质ABCDO角边对角线对边平行且相等对角相等,邻角互补对角线互相平分矩形的一般性质:Page13思考:作为特殊的平行四边形,矩形具有平行四边形的所有性质外,还有哪些特殊性质呢?结论1:矩形的四个角都是直角.结论2:矩形的对角线相等.ABCD结论3:(对称性)矩形是轴对称图形,也是中心对称形.Page141:矩形的四个角都是直角DCBA命题性质Page15已知:四边形ABCD是矩形,求证:AC=BDABCD证明:在矩形ABCD中有∠ABC=∠DAB=90°BC=AD又∵AB=BA∴△ABC≌△BAD∴AC=BD2:矩形的对角线相等.命题性质Page16矩形的性质:1、矩形具有平行四边形的所有性质。2、矩形的四个角都是直角。3、矩形的对角线相等。BCDAPage17边角对角线平行四边形矩形对边平行且相等对角相等邻角互补对角线互相平分对边平行且相等四个角都是直角对角线互相平分且相等类比总结矩形特有的性质Page18ABCO得到:直角三角形的一个性质直角三角形斜边上的中线等于斜边的一半.数学语言:∵在Rt△ABC中,BO是斜边AC上的中线∴BO=AC21在Rt△ABC中,BO=AC探索新知21在直角三角形ABC中,O是AC中点,思考BO与AC的数量关系BDCAOACBODPage19公平,因为OA=OC=OB=OD四个学生正在做投圈游戏,他们分别站在一个矩形的四个顶点处,目标物放在对角线的交点处,这样的队形对每个人公平吗?为什么?OABCD挑战开始Page21请选择624351挑战第一关进入第二关进入第三关通关小结(快速问答)1、矩形的定义中有两个条件:一是:二是:。。有一个角是直角是一个平行四边形(请你的同桌回答)2、矩形具有而一般平行四边形不具有的性质是()(A)对角线相等(B)对边相等(C)对角相等(D)对角线互相平分A(请你回答)4、在Rt△ABC中,∠ABC=90°,AC=16,BO是斜边上的中线,则BO的长为ACBO。8(你请她回答)3、如图,在矩形ABCD中,对角线AC、BD相交于点O,且AB=6,BC=8,则△ABO的周长为ABCDO。16(请你的邻桌回答)Page265、矩形是轴对称图形吗?它的对称轴是什么?(你请好朋友回答)是对边中点连线所在的直线Page276、下列说法错误的是()(A)矩形的对角线互相平分。(B)矩形的对角线相等。(C)有一个角是直角的四边形是矩形。(D)有一个角是直角的平行四边形叫做矩形。(请你回答)CPage28练习:如图,矩形ABCD的两条对角线相交于点O,且∠AOB=60°,AB=4cm.求矩形对角线的长.ABCDO解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分。∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形。∴OA=AB=4.∴AC=BD=2AO=8.挑战第二关:运用性质解决问题练习:如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,ED=5,EC=3,求矩形的周长及对角线的长。ABCDE354447挑战第三关谈谈你在这节课中学到了什么?有哪些收获?课堂小结直角三角形性质:直角三角形斜边上的中线等于斜边的一半.矩形是轴对称图形,有两条对称轴,连接对边中点的直线是它的两条对称轴.课堂小结矩形1、具有平行四边形的所有性质;2、矩形的四个角都是直角;3、矩形的对角线相等且互相平分.矩形:有一个角是直角的平行四边形叫做矩形.作业:课后作业
本文标题:18.2.1_矩形(公开课)
链接地址:https://www.777doc.com/doc-3301722 .html