您好,欢迎访问三七文档
ANUMERICALMETHODFORSOLVINGINVERSEEIGENVALUEPROBLEMSHUADAI1DepartmentofMathematicsNanjingUniversityofAeronauticsandAstronauticsNanjing210016,People’sRepublicofChinaCERFACSTechnicalReport-TR/PA/98/33AbstractBasedonQR-likedecompositionwithcolumnpivoting,anewande cientnumericalmethodforsolvingsymmetricmatrixinverseeigenvalueproblemsisproposed,whichissuitableforboththedistinctandmultipleeigenvaluecases.Alocallyquadraticcon-vergenceanalysisisgiven.Somenumericalexperimentsarepresentedtoillustrateourresults.Keywords:inverseeigenvalueproblems,QR-likedecomposition,leastsquares,Gauss-NewtonmethodAMS(MOS)subjectclassi cation:65F15,65H151ThisresearchwassupportedinpartbytheNationalNaturalScienceFoundationofChinaandtheJiangsuProvinceNaturalScienceFoundation.TheworkoftheauthorwasdoneduringavisittoCERFACS,FranceinMarch-August1998.11.IntroductionLetA(c)bethea nefamilyA(c)=A0+nXi=1ciAi(1)whereA0;A1; ;Anarerealsymmetricn nmatrices,andc=(c1; ;cn)T2Rn.Weconsiderinverseeigenvalueproblems(IEP)ofthefollowingform.IEP.Givenrealnumbers 1 2 n, ndc2Rnsuchthattheeigenvalues 1(c) 2(c) n(c)ofA(c)satisfy i(c)= i;i=1;2; ;n(2)TheIEPareofgreatimportancetomanyapplications.AgoodcollectionofinterestingapplicationswheretheIEPmayariseisincludedin[13].ThereisalargeliteratureonconditionsforexistenceofsolutionstotheIEP.See,forexample,[2,9,19,20,27-31,33].AspecialcaseoftheIEPisobtainedwhenthelinearfamily(1)isde nedbyAi=eieiT;i=1; ;nwhereeiistheithunitvector,sothatA(c)=A0+D,whereD=diag(c1; ;cn).Thisproblemiswellknownastheadditiveinverseeigenvalueproblem.Fordecadestherehasbeenconsiderablediscussionabouttheadditiveinverseeigenvalueproblem.Sometheoreticalresultsandcomputationalmethodscanbefound,forexample,inthearticles[7,8,11,12,15,17,24,32],andthebook[33]andthereferencescontainedtherein.NumericalalgorithmsforsolvingtheIEPcanbefound,forexample,in[1,3,4,6,13,16,23,33].Friedland,Nocedal,andOverton[13]havesurveyedfourquadraticallyconvergentnumericalmethods.Oneofthealgorithmsanalyzedin[13](alsosee[1,4,16])isNewton’smethodforsolvingthenonlinearsystem(2).EachstepinthenumericalsolutionbyNewton’smethodofthesystem(2)involvesthesolutionofcompleteeigen-problemforthematrixA(c).Twooftheothermethodsanalyzedin[13]aremotivatedasmodi cationstoNewton’smethodinwhichcomputingtimeissavedbyapproximat-ingtheeigenvectorswhenthematrixA(c)changes,ratherthanrecomputingthem.Thefourthmethodconsideredin[13]isbasedondeterminantevaluationandoriginatedwithBiegler-k onig[3],butitisnotcomputationallyattractive[13]forrealsymmetricmatrices.When 1; ; nincludemultipleeigenvalues,however,theeigenvalues 1(c); ; n(c)ofthematrixA(c)arenot,ingeneral,di erentiableatasolutionc .Furthermore,theeigenvectorsarenotunique,andtheycannotgenerallybede nedtobecontinuousfunc-tionsofcatc .Themodi cationtotheIEPhasbeenconsideredin[13],butthenumberofthegiveneigenvaluesandtheirmultiplicitiesshouldbesatis edacertainconditioninthemodi edproblem.Basedonthedi erentiabilitytheory[21]ofQRdecompositionofamatrixdependingonseveralvariables,Li[23]presentedanumericalmethodforsolvinginverseeigenvalueproblemsinthedistincteigenvaluecase.Inthispaper,weconsidertheformulationandlocalanalysisofaquadraticallycon-vergentmethodforsolvingtheIEP,assumingtheexistenceofasolution.Thepaperisorganizedasfollows.Insection2werecallsomenecessarydi erentiabilitytheoryforQR-likedecompositionofamatrixdependentonseveralparameters.Insection3anewalgorithmbasedonQR-likedecompositionisproposed.ItconsistsofextensionofideasdevelopedbyLi[22,23],DaiandLancaster[10],andissuitableforboththedistinctandmultipleeigenvaluescases.Itslocallyquadraticconvergenceanalysisisgiveninsection4.Finallyinsection5somenumericalexperimentsarepresentedtoillustrateourresults.Weshallusethefollowingnotation.AsolutiontotheIEPwillalwaysbedenotedbyc .Forthegiveneigenvalues 1; ; n,wewrite =( 1; ; n).k:k2denotesthe2Euclideanvectornormorinducedspectralnorm,andk:kFtheFrobeniusmatrixnorm.Forann mmatrixA=[a1; ;am],whereaiistheithcolumnvectorofA,wede neavectorcolAbycolA=[a1T; ;amT]T,andthenormkAk:=maxj=1; ;m(kajk2).Thesymbol denotestheKroneckerproductofmatrices.2.QR-likedecompositionanddi erentiabilityLetA2Rn nandm(1 m n)beaninteger.FollowingLi[22],wede neaQR-likedecompositionofAwithindexmtobeafactorizationA=QR;R=R11R120R22!(3)whereQ2Rn nisorthogonal,R11is(n m) (n m)uppertriangular,andR22ism msquare.Whenm=1,thisisaQRdecompositionofA.Clearly,aQR-likedecompositionofamatrixexistsalways.Infact,weneedonlyconstructa\partialQRdecomposition,see[14],forexample.Ingeneral,however,itisnotuniqueasthefollowingtheoremshows.Theorem2.1(see[10,22]).LetAbeann nmatrixwhose rstn mcolumnsarelinearlyindependentandletA=QRbeaQR-likedecompositionwithindexm.ThenA=bQbRisalsoaQR-likedecompositionwithindexmifandonlyifQ=bQD;R=DTbR(4)whereD=diag(D11;D22),D11isanorthogonaldiagonalmatrix,andD22isanm morthogonalmatrix.NotethatthelinearindependencehypothesisensuresthattheR11blocksofRandbRarenonsingular.InordertoensurethatthesubmatrixR11ofsuchadecompositionisnonsingular,weadmitapermutationoft
本文标题:A NUMERICAL METHOD FOR SOLVING INVERSE EIGENVALUE
链接地址:https://www.777doc.com/doc-3307573 .html