您好,欢迎访问三七文档
MODELSOFq-ALGEBRAREPRESENTATIONS:MATRIXELEMENTSOFTHEq-OSCILLATORALGEBRAE.G.KALNINSy,WILLARDMILLER,Jr.zANDSANCHITAMUKHERJEE*Abstract.Thispapercontinuesastudyoffunctionspacemodelsofirreduciblerepresentationsofq-analogsofLieenvelopingalgebras,motivatedbyrecurrencere-lationssatis edbyq-hypergeometricfunctions.Hereweconsideraq-analogoftheoscillatoralgebra(notaquantumalgebra).Weshowthatvariousq-analogsoftheexponentialfunctioncanbeusedtomimictheexponentialmappingfromaLieal-gebratoitsLiegroupandwecomputethecorrespondingmatrixelementsofthe\groupoperatorsontheserepresentationspaces.This\localapproachappliestomoregeneralfamiliesofspecialfunctions,e.g.,withcomplexargumentsandparam-eters,thandoesthequantumgroupapproach.Weshowthatthematrixelementsthemselvestransformirreduciblyundertheactionofthealgebra.We ndq-analogsofaformulafortheproductoftwohypergeometricfunctions1F1andtheproductofa1F1andaBesselfunction.Theyareinterpretedhereasexpansionsofthematrixelementsofa\groupoperator(viatheexponentialmapping)inatensorproductbasis(forthetensorproductoftwoirreducibleoscillatoralgebrarepresentations)intermsofthematrixelementsinareducedbasis.Asabyproductofthisanalysiswe ndaninterestingneworthonormalbasisforaq-analogoftheBargmann-SegalHilbertspaceofentirefunctions.PACS:02.20.+b,03.65.Fd1.Introduction.Thispapercontinuesthestudyoffunctionspacemodelsofirreduciblerepresentationsofq-algebras[1,2,3].Thesealgebrasandmodelsaremotivatedbyrecurrencerelationssatis edbyq-hypergeometricfunctions[4]andourtreatmentisanalternativetothetheoryofquantumgroups.Here,weconsidertheirreduciblerepresentationsofaq-analogoftheoscillatoralgebra(notaquantumalgebra).WereplacetheusualexponentialfunctionmappingfromtheLiealgebratotheLiegroupbytheq-exponentialmappingsEqandeq.Inplaceoftheusualmatrixelementsonthegroup(arisingfromanirreduciblerepresentation)whichareexpressibleintermsofLaguerrepolynomialsandfunctions,we ndseventypesofmatrixelementsexpressibleintermsofq-hypergeometricseries.Theseq-matrixelementsdonotsatisfygrouphomomorphismproperties,sotheydonotleadtoyDepartmentofMathematicsandStatistics,UniversityofWaikato,Hamilton,NewZealandzSchoolofMathematicsandInstituteforMathematicsanditsApplications,UniversityofMinnesota,Minneapolis,Minnesota55455.WorksupportedinpartbytheNationalScienceFoundationundergrantDMS91{100324*InstituteforMathematicsanditsApplications,UniversityofMinnesota,Minneapolis,Minnesota55455.WorksupportedbytheStudyAbroadfellowshipoftheGovernmentofIndia.TypesetbyAMS-TEX12E.G.KALNINSy,WILLARDMILLER,JR.zANDSANCHITAMUKHERJEE*additiontheoremsintheusualsense.However,theydosatisfyorthogonalityrela-tions.Furthermore,inanalogywithtruegrouprepresentationtheorywecanshowthateachofthesevenfamiliesofmatrixelementsdeterminesatwo-variablemodelforirreduciblerepresentationsoftheq-oscillatoralgebra.Inx3weshowhowthistwo-variablemodelleadstoorthogonalityrelationsforthematrixelements.Inx4we ndaq-analogofaformulafortheproductoftwohypergeometricfunctions1F1.Thisisinterpretedhereasanexpansionofthematrixelementsofa\groupoperator(viatheexponentialmapping)inatensorproductbasis(forthetensorproductoftwoirreducibleoscillatoralgebrarepresentations)intermsofthematrixelementsinareducedbasis.Inx5we ndaq-analogofaformulafortheproductofa1F1andaBesselfunction.Thisisinterpretedhereasanexpansionofthematrixelementsofthe\groupoperatorinatensorproductbasis(forthetensorproductofanirreducibleoscillatoralgebrarepresentationandanirreduciblerepresentationofthequantummotiongroup)intermsofthematrixelementsinareducedbasis.Asabyproductofthisanalysiswe ndaninterestingneworthonormalbasisforaq-analogoftheBargmann-SegalHilbertspaceofentirefunctions.Ourapproachtothederivationandunderstandingofq-seriesidentitiesisbasedonthestudyofq-algebrasasq-analogsofLiealgebras,[5,6].Weareattemptingto ndq-analogsofthetheoryrelatingLiealgebraandlocalLietransformationgroups[7,8].AsimilarapproachhasbeenadoptedbyFloreaniniandVinet[9-12].Thisisanalternativetotheelegantpapers[13-21]whicharebasedprimarilyonthetheoryofquantumgroups.Themainjusti cationofthe\localapproachisthatitismoregeneral;itappliestomoregeneralfamiliesofspecialfunctionsthandoesthequantumgroupapproach.Thenotationusedforq-seriesinthispaperfollowsthatofGasperandRahman[22].2.Modelsofoscillatoralgebrarepresentations.In[1]aq-analogoftheoscillatoralgebrawasintroduced.ThisistheassociativealgebrageneratedbythefourelementsH,E+,E ,Ethatobeythecommutationrelations[H;E+]=E+;[H;E ]= E ;[E+;E ]= q HE;[E;E ]=[E;H]=0:(2.1)Itadmitsaclassofalgebraicallyirreduciblerepresentations‘; where‘; arecomplexnumbersand‘6=0.Thesearede nedonavectorspacewithbasisfen:n=0;1;2; g,suchthatE+en=‘sq n 1 11 qen+1E en=‘sq n 11 qen 1(2.2)Hen=( +n)en;Een=‘2q 1en:If and‘arerealwith‘0(aswewillassumeinthispaper)then‘; isde nedontheHilbertspaceK0withorthonormalbasisfengandonthisspaceMODELSOFq-ALGEBRAREPRESENTATIONS:MATRIXELEMENTSOFTHEq-OSCILLATORALGEBRA3wehaveE+=(E ) ,H =HandE =E.AsecondconvenientbasisforK0isffn:n=0;1; gwhereE+fn=‘q (n+1)=2fn+1E fn=‘q n=21 qn1 qfn 1(2.3)Hfn=( +n)fnEfn=‘2q 1fn:Here
本文标题:MODELS OF q-ALGEBRA REPRESENTATIONS MATRIX ELEMENT
链接地址:https://www.777doc.com/doc-3307829 .html