您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高中数学组卷――数列高考题训练
第1页(共16页)高中数学组卷——数列高考题训练一.解答题(共15小题)1.等差数列{an}中,a3+a4=4,a5+a7=6.(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.2.已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.(Ⅰ)求数列{bn}的通项公式;(Ⅱ)令cn=,求数列{cn}的前n项和Tn.3.已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.(Ⅰ)求{an}的通项公式;(Ⅱ)求{bn}的前n项和.4.已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.5.设数列{an}的前n项和为Sn,已知2Sn=3n+3.(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.6.设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an},{bn}的通项公式(2)当d>1时,记cn=,求数列{cn}的前n项和Tn.7.Sn为数列{an}的前n项和,已知an>0,an2+2an=4Sn+3(I)求{an}的通项公式:(Ⅱ)设bn=,求数列{bn}的前n项和.8.已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.第2页(共16页)(1)求数列{an}的通项公式;(2)设Sn为数列{an}的前n项和,bn=,求数列{bn}的前n项和Tn.9.已知数列{an}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{an}的通项公式;(2)设bn=(an+1)•2,求数列{bn}的前n项和Tn.10.已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{an}的通项公式;(2)设bn=,n∈N*,求数列{bn}的前n项和.11.设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn﹣1.(1)求a4的值;(2)证明:{an+1﹣an}为等比数列;(3)求数列{an}的通项公式.12.数列{an}满足:a1+2a2+…nan=4﹣,n∈N+.(1)求a3的值;(2)求数列{an}的前n项和Tn;(3)令b1=a1,bn=+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.13.已知数列{an}的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.14.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设bn=3n•,求数列{bn}的前n项和Sn.第3页(共16页)15.设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.第4页(共16页)一.解答题(共15小题)1.等差数列{an}中,a3+a4=4,a5+a7=6.(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.【解答】解:(Ⅰ)设等差数列{an}的公差为d,∵a3+a4=4,a5+a7=6.∴,解得:,∴an=;(Ⅱ)∵bn=[an],∴b1=b2=b3=1,b4=b5=2,b6=b7=b8=3,b9=b10=4.故数列{bn}的前10项和S10=3×1+2×2+3×3+2×4=24.2.已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.(Ⅰ)求数列{bn}的通项公式;(Ⅱ)令cn=,求数列{cn}的前n项和Tn.【解答】解:(Ⅰ)Sn=3n2+8n,∴n≥2时,an=Sn﹣Sn﹣1=6n+5,n=1时,a1=S1=11,∴an=6n+5;∵an=bn+bn+1,第5页(共16页)∴an﹣1=bn﹣1+bn,∴an﹣an﹣1=bn+1﹣bn﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴bn=4+3(n﹣1)=3n+1;(Ⅱ)cn========6(n+1)•2n,∴Tn=6[2•2+3•22+…+(n+1)•2n]①,∴2Tn=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣Tn=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴Tn=3n•2n+2.3.已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.(Ⅰ)求{an}的通项公式;(Ⅱ)求{bn}的前n项和.【解答】解:(Ⅰ)∵anbn+1+bn+1=nbn.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{an}是公差为3的等差数列,第6页(共16页)∴an=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)bn+1+bn+1=nbn.即3bn+1=bn.即数列{bn}是以1为首项,以为公比的等比数列,∴{bn}的前n项和Sn==(1﹣3﹣n)=﹣.4.已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.第7页(共16页)5.设数列{an}的前n项和为Sn,已知2Sn=3n+3.(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.【解答】解:(Ⅰ)因为2Sn=3n+3,所以2a1=31+3=6,故a1=3,当n>1时,2Sn﹣1=3n﹣1+3,此时,2an=2Sn﹣2Sn﹣1=3n﹣3n﹣1=2×3n﹣1,即an=3n﹣1,所以an=.(Ⅱ)因为anbn=log3an,所以b1=,当n>1时,bn=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,Tn=b1+b2+…+bn=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3Tn=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2Tn=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n﹣1)×31﹣n=﹣,所以Tn=﹣,经检验,n=1时也适合,综上可得Tn=﹣.6.设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an},{bn}的通项公式(2)当d>1时,记cn=,求数列{cn}的前n项和Tn.【解答】解:(1)设a1=a,由题意可得,解得,或,第8页(共16页)当时,an=2n﹣1,bn=2n﹣1;当时,an=(2n+79),bn=9•;(2)当d>1时,由(1)知an=2n﹣1,bn=2n﹣1,∴cn==,∴Tn=1+3•+5•+7•+9•+…+(2n﹣1)•,∴Tn=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴Tn=2+++++…+﹣(2n﹣1)•=3﹣,∴Tn=6﹣.7.Sn为数列{an}的前n项和,已知an>0,an2+2an=4Sn+3(I)求{an}的通项公式:(Ⅱ)设bn=,求数列{bn}的前n项和.【解答】解:(I)由an2+2an=4Sn+3,可知an+12+2an+1=4Sn+1+3两式相减得an+12﹣an2+2(an+1﹣an)=4an+1,即2(an+1+an)=an+12﹣an2=(an+1+an)(an+1﹣an),∵an>0,∴an+1﹣an=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{an}是首项为3,公差d=2的等差数列,∴{an}的通项公式an=3+2(n﹣1)=2n+1:(Ⅱ)∵an=2n+1,∴bn===(﹣),∴数列{bn}的前n项和Tn=(﹣+…+﹣)=(﹣)=.8.已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{an}的通项公式;第9页(共16页)(2)设Sn为数列{an}的前n项和,bn=,求数列{bn}的前n项和Tn.【解答】解:(1)∵数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.∴a1+a4=9,a1a4=a2a3=8.解得a1=1,a4=8或a1=8,a4=1(舍),解得q=2,即数列{an}的通项公式an=2n﹣1;(2)Sn==2n﹣1,∴bn===﹣,∴数列{bn}的前n项和Tn=+…+﹣=﹣=1﹣.9.已知数列{an}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{an}的通项公式;(2)设bn=(an+1)•2,求数列{bn}的前n项和Tn.【解答】解:(1)设等差数列{an}的首项为a1、公差为d,则a1>0,∴an=a1+(n﹣1)d,an+1=a1+nd,令cn=,则cn==[﹣],∴c1+c2+…+cn﹣1+cn=[﹣+﹣+…+﹣]=[﹣]==,又∵数列{}的前n项和为,∴,第10页(共16页)∴a1=1或﹣1(舍),d=2,∴an=1+2(n﹣1)=2n﹣1;(2)由(1)知bn=(an+1)•2=(2n﹣1+1)•22n﹣1=n•4n,∴Tn=b1+b2+…+bn=1•41+2•42+…+n•4n,∴4Tn=1•42+2•43+…+(n﹣1)•4n+n•4n+1,两式相减,得﹣3Tn=41+42+…+4n﹣n•4n+1=•4n+1﹣,∴Tn=.10.已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{an}的通项公式;(2)设bn=,n∈N*,求数列{bn}的前n项和.【解答】解:(1)∵an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,∴a3=q,a5=q2,a4=2q,又∵a2+a3,a3+a4,a4+a5成等差数列,∴2×3q=2+3q+q2,即q2﹣3q+2=0,解得q=2或q=1(舍),∴an=;(2)由(1)知bn===,n∈N*,记数列{bn}的前n项和为Tn,则Tn=1+2•+3•+4•+…+(n﹣1)•+n•,∴2Tn=2+2+3•+4•+5•+…+(n﹣1)•+n•,两式相减,得Tn=3++++…+﹣n•第11页(共16页)=3+﹣n•=3+1﹣﹣n•=4﹣.11
本文标题:高中数学组卷――数列高考题训练
链接地址:https://www.777doc.com/doc-3314726 .html