您好,欢迎访问三七文档
Constancyofdistributions:asymptoticefficiencyofcertainnonparametrictestsofconstancyAlexJ.KoningEconometricInstituteErasmusUniversityRotterdamP.O.Box1738NL-3000DRRotterdamTheNetherlandskoning@few.eur.nlNilsLidHjortDepartmentofMathematicsandStatisticsUniversityofOsloP.O.Box1053BlindernN-0316Oslo3Norwaynils@math.uio.noEconometricInstituteReportEI2002-33AbstractInthispaperwestudystochasticprocesseswhichenablemonitoringthepos-siblechangesofprobabilitydistributionsovertime.Theseso-calledmonitoringprocessesarebivariatefunctionsoftimeandpositionatthemeasurementscale,andinparticularbeusedtotestthenullhypothesisofnochange:onemaythenformKolmogorov–Smirnovorothertypeoftestsasfunctionalsoftheprocesses.InHjortandKoning(2001)Cram´er-typedeviationresultswereobtainedundertheconstancynullhypothesisfor[bootstrappedversionsof]such“derived”teststatistics.Herethebehaviourofderivedteststatisticsisinvestigatedunderalternativesinthevicinityoftheconstancyhypothesis.WhencombinedwithCram´er-typedeviationresults,theresultsinthispaperenablethecomputationofefficienciesofthecorrespondingtests.Thediscussionofsomeexamplesofyieldguidelinesforthechoiceoftheteststatistic,andhencefortheunderlyingmonitoringprocess.1IntroductionandsummaryAssumethatindependentdataareavailableforeachof consecutiveoccasions,per-hapsmeasurementsofsomequantitytakenonseparatedates.Thenullhypothesistobetestedhereisthatof (1)where isthecumulativedistributionfunctionspecifyingthedistributionofdata onoccasion .Weshallreferto asthe subsample.Together,thesubsamplesformthefullsample.1Constancyofdistributions:asymptoticefficiency2Onemaythinkof(1)asthehypothesisthataninfinitedimensionalparameter remainsconstant.Inthisperspective, isthevalueof inthe !subsample.Weshalldenotethesize$# %’&&&