您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【精品练习】人教版高中数学选修2-3综合测试卷A(含答案)
11.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为()A.23397CCB.2332397397CC+CCC.514100397C-CCD.5510097C-C[来源:学。科。网]2.222223410CCCC等于()A.990B.165C.120D.553.二项式3032aa的展开式的常数项为第()项A.17B.18C.19D.204.设2921101211(1)(21)(2)(2)(2)xxaaxaxax,则01211aaaa的值为()A.2B.1C.1D.25.从6名学生中,选出4人分别从事A、B、C、D四项不同的工作,若其中,甲、乙两人不能从事工作A,则不同的选派方案共有()A.96种B.180种C.240种D.280种6.设随机变量服从B(6,12),则P(=3)的值是()A.516B.316C.58D.387.在某一试验中事件A出现的概率为p,则在n次试验中A出现k次的概率为()A.1-kpB.knkpp1C.1-kp1D.knkknppC18.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A.95B.94C.2111D.21109.随机变量服从二项分布~pnB,,且,200,300DE则p等于()A.32B.31C.1D.010.某考察团对全国10大城市进行职工人均平均工资x与居民人均消费y进行统计调查,y与x具有相关关系,回归方程562.166.0ˆxy(单位:千元),若某城市居民消费水平为7.675,估计该城市消费额占人均工资收入的百分比为()A.66%B.72.3%C.67.3%D.83%11.设随机变量X~N(2,4),则D(21X)的值等于()2A.1B.2C.21D.412.设回归直线方程为ˆ21.5yx,则变量x增加一个单位时,()A.y平均增加1.5个单位B.y平均增加2个单位C.y平均减少1.5个单位D.y平均减少2个单位13.已知3-21010C=Cxx,则x__________.14.A、B、C、D、E五人并排站成一排,若A,B必须相邻,且B在A的左边,那么不同的排法共有种15.已知二项分布满足2(6,)3XB,则P(X=2)=_________,EX=_________.16.有4台设备,每台正常工作的概率均为0.9,则4台中至少有3台能正常工作的概率为.(用小数作答)17.若p为非负实数,随机变量ξ的分布为ξ012P12-pp12则Eξ的最大值为,Dξ的最大值为.18.从1,2,3,…,9九个数字中选出三个不同的数字a,b,c,且a<b<c,作抛物线y=ax2+bx+c,则不同的抛物线共有条(用数字作答).19.(本小题满分14分)已知57A56Cnn,且(1-2x)n=a0+a1x+a2x2+a3x3+……+anxn.(Ⅰ)求n的值;(Ⅱ)求a1+a2+a3+……+an的值.20.(本小题满分14分)已知22()nxx的展开式中,第5项的系数与第3项的系数之比是56:3,求展开式中的常数项。321.(本小题满分16分)某射击运动员射击一次所得环数X的分布列如下:X0~678910P00.20.30.30.2现进行两次射击,以该运动员两次射击所得的最高环数作为他的成绩,记为.(1)求该运动员两次都命中7环的概率.(2)求的分布列及数学期望E.22.(本小题满分16分)[来源:学科网]已知某类型的高射炮在它们控制的区域内击中具有某种速度敌机的概率为15.(Ⅰ)假定有5门这种高射炮控制某个区域,求敌机进入这个区域后被击中的概率;(Ⅱ)要使敌机一旦进入这个区域内有90%以上的概率被击中,至少需要布置几门这类高射炮?(参考数据lg20.301,lg30.4771)参考答案一、选择题二、填空题13、1或314、2415、20243,416、0.947717、32;118、8419(Ⅰ)由57A56Cnn得:n(n-1)(n-2)(n-3)(n-4)=56·1234567)6)(5)(4)(3)(2)(1(nnnnnnn即(n-5)(n-6)=90解之得:n=15或n=-4(舍去).∴n=15.(Ⅱ)当n=15时,由已知有:(1-2x)15=a0+a1x+a2x2+a3x3+……+a15x15,令x=1得:a0+a1+a2+a3+……+a15=-1,令x=0得:a0=1,题号123456789101112[来源:Zxxk.Com]答案BBBACADCBDAC4∴a1+a2+a3+……+a15=-2.20.解:442225610或5舍去23nnCnC由通项公式5521101021022rrrrrrrTCXCXX,当r=2时,取到常数项即3180T21.解:(1)设“该运动员两次都命中7环”为事件A,因为该运动员在两次射击中,第一次射中7环,第二次也射中7环,故所求的概率P(A)=0.2×0.2=0.04(2)可取7、8、9、10(7)0.04P2(8)20.20.30.30.21P2(9)20.20.320.30.30.30.39P(10)1(7)(8)(9)0.36PPPP故的分布列为E9.0722.解(Ⅰ)设敌机被各炮击中的事件分别记为A1、A2、A3、A4、A5,那么5门炮都未击中敌机的事件为54321AAAAAC,因各炮射击的结果是相互独立的,所以512345()()()()()()[()]PCPAPAPAPAPAPA55514[1()]155PA因此敌机被击中的概率为542101()1()153125PCPC.(Ⅱ)设至少需要置n门高射炮才能有90%以上的概率击中敌机,由①可知491510n,即41510n,两边取常用对数,得3.103010.03112lg311n,∴n≥11.即至少需要布置11门高射炮才能有90%以上的概率击中敌机.78910P0.040.210.390.36
本文标题:【精品练习】人教版高中数学选修2-3综合测试卷A(含答案)
链接地址:https://www.777doc.com/doc-3319509 .html