您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 金融资料 > 数学分析泰勒公式-4-3
2008/12/01§4.3带Lagrange余项与Cauchy余项的Taylor定理一引理,1)(,),(],[,ababaf可导连续,在设使则),,(,0)(bab)].()()[(')('bfaff证:)151(P参看二Taylor定理:,],[,,1),(,],[0有则对阶导数内有在阶连续导数上有在baxxnbanbaf),();,()(0xRxxfTxfnn,)()!1()()(101)1(nnnxxnfxR)()(!)()(022)1(xxxnfxRnnnCauchy余项Lagrange余项),,(021之间介于xx其中证:①即视为变量中将,);,(00txxxfTn))((')();,()(txtftfxtfTtFn令nntxntftxtf)(!)()(!2)()(2nkkktxktftf1)()(!)()(),;,()(00xxfTxFn),()(xfxF)()()(0xRxFxFn])(!)()(!)([)(')('1)(1)1(kknkkktxkktftxktftftFnntxntf)(!)()1(②由引理知取,)()(10nxxtxt)]()()[(')('011xFxFF10)()()1()('nnxxtxnt又nnxnf)(!)(11)1()]();,([)()()1(0101xfxxfTxxxnnnn,)()!1()();,()(101)1(0nnnxxnfxxfTxf),(01xx③001)(')(xxtxxtxt,取)]();,([1)(!)(0022)1(xfxxfTxxxnfnnn)()(!)();,()(022)1(0xxxnfxxfTxfnnn),(02xx三定理意义))((')()(000xxxfxfxf10)1(00)()()!1()()(!)(nnnnxxnfxxnxf1.2.)()(!)(0)1(xxxnfnn3.余项将Peano),(0邻域内局部x区间推广到),(ba;大范围从局部精确从模糊4..,)(估计误差可更精确地的表达式利用余项xRn有n阶导数有n+1阶导数2!2)0()0(')0()(xfxffxf1)1()()!1()(!)0(nnnnxnfxnf.10,)!1()()(:1)1(nnnxnxfxRLagrangexxxnxfxRCauchynnn)(!)()(:)1(nnnxnxf)1(!)(1)1(5.展开式:时,Maclaurinx00四常用展开式1.10,)!1(!!2112nxnxxnenxxxe.)(,)()1()(xnxneefexf2.!7!5!3sin753xxxxx12121)!12(cos)1()!12()1(nnnnxnxnx),2sin()()(nxxfn)!2()1(!4!21cos242nxxxxnn3.4.nxxxxxnn132)1(32)1ln(.)1(1)1(11nnnxxn221)!22(cos)1(nnxnxnkkkxxC0)1(nnxnxf)1)(1()1()()(5.1)1()1)(()1()(nnnf11)1()1(!)()1()(nnnnxxnnxR余项为Cauchy111)1(nnnxxC五用估计误差)(xRn例1解:.,sin);0,(,],0[9求误差逼近用上在xxfT119753!11cos!9!7!5!3sinxxxxxxxx)1,0(0073404.0!11!11)(1111xxRn①).(,局部误差越小越小x②).(,全部误差越小越大n例2解:.102.1ln4,精确到计算)2.01ln(2.1ln),1ln()(xxf取1)1(11)(111nxxnxxRnnnn,2.0,5xn取.000011.062.0)(6达到要求xRn52.042.032.022.02.02.1ln54321823.0六用Taylor公式证明问题的技巧的选择0,xx①点、极值点;可选为端点、中点、驻0x②).()(0hxfhxfxx,,计算取为关键例3,0)(')('],[bfafbaf二阶可导,在,使),(bac,)()()(4)(''2afbfabcf.)(4)()()(:2cfabafbf即证:.2,,处值计算处展开在端点baxba求证:21)(2)())((')()(axcfaxafafxf21)(2)()(axcfaf,取2bax21)2(2)()()2(abcfafbaf22)2(2)()()2(abcfbfbaf两式相减)]()([8)()()(212cfcfabafbf])()([8)()()(212cfcfabafbf,)(,)(,2121ccfcfcc大者为中使取.)(4)()()(2cfabafbf例4证:),(,,0)(),(21baxxxfba求证:内在)].()([21)2(2121xfxfxxf.)(,,22121210处值计算处展开在xxxxxxx2)2(')2()(2121211xxxxfxxfxf2211)2(2)(xxf2)2(')2()(1221212xxxxfxxfxf2122)2(2)(xxf两式相加)()(21xfxf)]()([8)()2(22122121ffxxxxf)2(221xxf例5证:,0)1()0(]1,0[fff内二阶可导,在8)(max,1)(min]1,0[]1,0[xfxfxx求证:,1)(,)1,0(最小内取得极小值在cf点展开:在ccf,0)(',0)(2)())((')()0(21cfccfcff,0)1(2)()1)((')()1(22cfccfcff,2)(,12)(2121cfcf即,)1(2)(,1)1(2)(2222cfcf8)()21(1fc时8)()21(2fc时)8)(,.(8)(max]1,0[fxfx例6证:bxfaxff)(,)(,]1,0[且内二阶可导在22)('baxf求证:处值处展开,计算在1,00xx,2)())((')()0(21xfxxfxff22)1(2)()1)((')()1(xfxxfxff)0()1(ff)('xf)(21)()1(21)('1222fxfxxf)(21)()1(21)0()1(1222fxfxffbxxa])1[(2122222])1[(212babxxa例7证:有界,若三阶可导在',,),(fff.,':也有界证明ff.1,10处值处展开,分别计算在xxxx.)(',)(21MxfMxf设!3)('2)()(')()1(1fxfxfxfxf!3)('2)()(')()1(2fxfxfxfxf两式相加)1()1(xfxf)](')('[!31)()(221ffxfxf有界21314)(MMxf两式相减)1()1(xfxf)](')('[!31)('221ffxf有界2131)('MMxf关于θ的极限例8:0)0(,1)1,1()1(可得展式,且阶可导内在nfnf2!2)0()0(')0()(xfxffxf)10(,!)()!1()0()(1)1(nnnnnnxnxfxnf.11lim0nnx求证:证:)()0()0()()1()()(xoxffxfnnnnnn)!1()0()0(')0()()1(nfffxfn)(!)0(!)0(11)1()(nnnnnnxoxnfxnf)!1()0()0(')0()()1(nfffxfn又)()!1()0(!)0(11)1()(nnnnnxoxnfxnf两式相减)()!1()0(!)0(11)1(1)1(nnnnnnxoxnfxnf11)()1(1nnnxxon11lim0nnx作业(数学分析习题集)习题4.2Taylor公式A1;6、1),2),4);7;8;9;10;11.
本文标题:数学分析泰勒公式-4-3
链接地址:https://www.777doc.com/doc-3321287 .html