您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 第7章 回归分析(压缩)
SPSS16实用教程第7章回归分析回归分析基本概念7.1一元线性回归分析7.2多元线性回归分析7.3非线性回归分析7.47.1回归分析基本概念相关分析和回归分析都是研究变量间关系的统计学课题。在应用中,两种分析方法经常相互结合和渗透,但它们研究的侧重点和应用面不同。在回归分析中,变量y称为因变量,处于被解释的特殊地位;而在相关分析中,变量y与变量x处于平等的地位,研究变量y与变量x的密切程度和研究变量x与变量y的密切程度是一样的。在回归分析中,因变量y是随机变量,自变量x可以是随机变量,也可以是非随机的确定变量;而在相关分析中,变量x和变量y都是随机变量。相关分析是测定变量之间的关系密切程度,所使用的工具是相关系数;而回归分析则是侧重于考察变量之间的数量变化规律,并通过一定的数学表达式来描述变量之间的关系,进而确定一个或者几个变量的变化对另一个特定变量的影响程度。具体地说,回归分析主要解决以下几方面的问题。通过分析大量的样本数据,确定变量之间的数学关系式。对所确定的数学关系式的可信程度进行各种统计检验,并区分出对某一特定变量影响较为显著的变量和影响不显著的变量。利用所确定的数学关系式,根据一个或几个变量的值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确度。在实际中,根据变量的个数、变量的类型以及变量之间的相关关系,回归分析通常分为一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析和逻辑回归分析等类型。7.2一元线性回归分析7.2.1统计学上的定义和计算公式定义:一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。通过样本数据建立一个回归方程后,不能立即就用于对某个实际问题的预测。必须对其作各种统计检验。一般经常作以下的统计检验。(1)拟合优度检验回归方程的拟合优度检验就是要检验样本数据聚集在样本回归直线周围的密集程度,从而判断回归方程对样本数据的代表程度。回归方程的拟合优度检验一般用判定系数R2实现。该指标是建立在对总离差平方和进行分解的基础之上。(2)回归方程的显著性检验(F检验)回归方程的显著性检验是对因变量与所有自变量之间的线性关系是否显著的一种假设检验。回归方程的显著性检验一般采用F检验,利用方差分析的方法进行。(3)回归系数的显著性检验(t检验)所谓回归系数的显著性检验,就是根据样本估计的结果对总体回归系数的有关假设进行检验。研究问题合成纤维的强度与其拉伸倍数有关,测得试验数据如表7-1所示。求合成纤维的强度与拉伸倍数之间是否存在显著的线性相关关系。7.2.2SPSS中实现过程表7-1强度与拉伸倍数的试验数据序号拉伸倍数强度(kg/mm2)12.01.622.52.432.72.543.52.754.03.564.54.275.25.086.36.497.16.5108.07.3119.08.01210.08.1实现步骤图7-1在菜单中选择“Linear”命令图7-2“LinearRegression”对话框(一)图7-3“LinearRegression:Statistics”对话框图7-4“LinearRegression:Plots”对话框图7-5“LinearRegression:Save”对话框图7-6“LinearRegression:Options”对话框(1)输出结果文件中的第一个表格如下表所示。7.2.3结果和讨论(2)输出的结果文件中第二个表格如下表所示。(3)输出的结果文件中第三个表格如下表所示。(4)输出的结果文件中第四个表格如下表所示。7.3多元线性回归分析7.3.1统计学上的定义和计算公式定义:在上一节中讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量的因素往往有多个。例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照时数、平均湿度等。因此,在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。这就产生了测定多因素之间相关关系的问题。研究在线性相关条件下,两个或两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上更为复杂,一般需借助计算机来完成。研究问题用多元回归分析来分析36个员工多个心理变量值(z1~z8)对员工满意度my的预测效果,测得试验数据如表7-2所示。7.3.2SPSS中实现过程表7-2员工多个心理变量值和员工满意度数据z1z2z3z4z5z6z7Z8满意度66.0064.0062.0050.0058.0056.001.081.0025.0055.0050.0059.0059.0053.0051.001.001.1122.0050.0047.0049.0045.0046.0046.001.311.2020.0055.0059.0050.0054.0052.0069.001.001.0020.0055.0059.0048.0056.0047.0050.001.001.0024.0062.0054.0068.0046.0046.0051.001.081.0023.0060.0060.0056.0053.0052.0051.001.081.0021.0052.0052.0069.0058.0057.0062.001.001.0023.0056.0055.0057.0039.0044.0046.001.691.0015.0050.0050.0068.0046.0045.0056.001.081.1425.0058.0054.0060.0059.0052.0051.001.001.0025.0053.0052.0055.0057.0065.0064.001.081.0022.0052.0056.0053.0057.0063.0051.001.461.4320.0056.0065.0052.0051.0062.0047.001.001.0022.0050.0063.0059.0053.0055.0048.001.001.0020.0063.0057.0060.0066.0051.0056.001.001.0026.0056.0046.0058.0050.0045.0052.002.231.2921.0047.0050.0057.0049.0050.0048.002.081.1420.0053.0066.0053.0059.0055.0045.001.001.0025.00z1z2z3z4z5z6z7z8满意度61.0055.0058.0061.0058.0061.001.151.1423.0059.0064.0060.0052.0054.0056.001.081.0026.0055.0060.0072.0060.0055.0067.001.081.0026.0056.0052.0068.0040.0051.0055.001.851.7130.0059.0051.0061.0056.0052.0056.001.001.0025.0060.0053.0062.0055.0047.0063.001.311.1427.0052.0051.0057.0045.0055.0059.001.231.1420.0056.0057.0057.0052.0059.0055.001.001.1426.0068.0058.0071.0068.0053.0061.001.001.0030.0060.0053.0061.0060.0056.0051.001.001.0027.0064.0056.0074.0050.0059.0057.001.851.1418.0067.0053.0060.0053.0053.0051.001.001.0024.0056.0056.0067.0067.0056.0052.001.001.0024.0053.0046.0049.0043.0050.0048.001.311.1419.0053.0057.0065.0052.0067.0059.001.771.4317.0060.0040.0071.0057.0056.0058.001.081.0024.0054.0045.0044.0049.0042.0046.001.001.0023.00实现步骤图7-7“LinearRegression”对话框(二)(1)输出结果文件中的第一个表格如下表所示。7.3.3结果和讨论2)输出的结果文件中第二个表格如下表所示。(3)输出的结果文件中第三个表格如下表所示。(4)输出的结果文件中第四个表格如下表所示。(5)输出的结果文件中第五个表格如下表所示。(6)输出的结果文件中第六个表格为回归系数分析,如下表所示(7)输出的结果文件中第七个表格如下表所示。(8)输出的结果文件中第八部分为图形,为回归因变量和每个自变量之间的关系点图。图7-8为自变量z1和my之间的关系点图。7.4.1统计学上的定义和计算公式7.4非线性回归分析定义:研究在非线性相关条件下,自变量对因变量的数量变化关系,称为非线性回归分析。在实际问题中,变量之间的相关关系往往不是线性的,而是非线性的,因而不能用线性回归方程来描述它们之间的相关关系,而要采用适当的非线性回归分析。非线性回归问题大多数可以化为线性回归问题来求解,也就是通过对非线性回归模型进行适当的变量变换,使其化为线性模型来求解。一般步骤为:根据经验或者绘制散点图,选择适当的非线性回归方程;通过变量置换,把非线性回归方程化为线性回归;用线性回归分析中采用的方法来确定各回归系数的值;对各系数进行显著性检验。计算公式如下。在本节中介绍几种常见的非线性回归模型,并分别给出其线性化方法及图形。研究问题研究民用汽车总量与国内生产总值的关系。数据如表7-3所示。(资料来源:《中国统计年鉴2007》,中国统计出版社,2007年)7.4.2SPSS中实现过程实现步骤图7-9“SimpleScatterplot”对话框图7-10散点图图7-11“CurveEstimation”对话框(一)7.4.3结果和讨论(1)第一部分输出相关统计量和参数的值,如下表所示。(2)第二部分输出的是观察值和Cubic,Power两种曲线预测值的对比图,如图7-12所示。小结回归分析是研究变量与变量之间联系的最为广泛的模型。在实际中,根据变量的个数、类型,以及变量之间的相关关系。小结一元线性回归只涉及一个自变量的回归问题;多元线性回归用于解决两个或两个以上自变量对一个因变量的数量变化关系问题;非线性回归主要解决在非线性相关条件下,自变量对因变量的数量变化关系。小结SPSS中“Analyze”/“Regression”菜单可用于回归统计分析。其中,一元线性回归、多元线性回归和含虚拟变量的回归分析可由“Linear”子菜单完成;非线性回归分析可由“CurveEstimation”子菜单完成。习题•习题1:相关分析•对33名产妇产前检查及婴儿体重测值,骼前上棘间径(X1)、骼脊间径(X2)、止骼外径(X3)、坐骨节间径(X4)、血红蛋白(X5)和婴儿体重(X6)等6个指标,计算X1~X4的Pearson相关性。(文件:Hong1.sav)•习题2:偏相关分析•某地29名13岁南通身高(x1)、体重(X2)、肺活量(Y)的数据。试计算期简单相关系数。当体重被控制时,计算身高与肺活量的偏相关系数r。(数据文件:Partial.sav)•习题3:多元线性回归•随机测量32名40岁以上男性的血压、年龄、身高、体重及吸烟史
本文标题:第7章 回归分析(压缩)
链接地址:https://www.777doc.com/doc-3340205 .html