您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高考数学复习系列(四)集合与常用逻辑用语篇
第1页共32页高考数学复习系列(四)——集合与常用逻辑用语篇目录1.第一章复习2.《新课标》高三数学(人教版)第一轮复习单元讲座第一章复习第一章集合与常常用用逻逻辑辑用用语语§1.1集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A的任意一个元素都是集合B的元素(若Aa则Ba),则称集合A为集合B的子集,记为AB或BA;如果AB,并且AB,这时集合A称为集合B的真子集,记为AB或BA.4.集合的相等:如果集合A、B同时满足AB、BA,则A=B.5.补集:设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为ACs.第2页共32页6.全集:如果集合S包含所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A且属于B的元素构成的集合,称为A与B的交集,记作AB.8.并集:一般地,由所有属于集合A或者属于B的元素构成的集合,称为A与B的并集,记作AB.9.空集:不含任何元素的集合称为空集,记作.10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn图).13.常用数集的记法:自然数集记作N,正整数集记作N+或N*,整数集记作Z,有理数集记作Q,实数集记作R.二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴第3页共32页或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B=易漏掉的情况.5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n个元素的集合的所有子集个数为:n2,所有真子集个数为:n2-1三、经典例题导讲[例1]已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=()A.(0,1),(1,2)B.{(0,1),(1,2)}C.{y|y=1,或y=2}D.{y|y≥1}错解:求M∩N及解方程组112xyxy得10yx或21yx∴选B错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是实数对(x,y),因此M、N是数集而不是点集,M、N分别表示函数y=x2+1(x∈R),y=x+1(x∈R)的值域,求M∩N即求两函数值域的交集.第4页共32页正解:M={y|y=x2+1,x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R}.∴M∩N={y|y≥1}∩{y|(y∈R)}={y|y≥1},∴应选D.注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x∈R},这三个集合是不同的.[例2]已知A={x|x2-3x+2=0},B={x|ax-2=0}且A∪B=A,求实数a组成的集合C.错解:由x2-3x+2=0得x=1或2.当x=1时,a=2,当x=2时,a=1.错因:上述解答只注意了B为非空集合,实际上,B=时,仍满足A∪B=A.当a=0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A∴BA又A={x|x2-3x+2=0}={1,2}∴B=或21或∴C={0,1,2}[例3]已知mA,nB,且集合A=Zaaxx,2|,B=Zaaxx,12|,又C=Zaaxx,14|,则有:()A.m+nAB.m+nBC.m+nCD.m+n不属于A,B,C中任意一个第5页共32页错解:∵mA,∴m=2a,aZ,同理n=2a+1,aZ,∴m+n=4a+1,故选C错因是上述解法缩小了m+n的取值范围.正解:∵mA,∴设m=2a1,a1Z,又∵nB,∴n=2a2+1,a2Z,∴m+n=2(a1+a2)+1,而a1+a2Z,∴m+nB,故选B.[例4]已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若BA,求实数p的取值范围.错解:由x2-3x-10≤0得-2≤x≤5.欲使BA,只须3351212ppp∴p的取值范围是-3≤p≤3.错因:上述解答忽略了空集是任何集合的子集这一结论,即B=时,符合题设.正解:①当B≠时,即p+1≤2p-1p≥2.由BA得:-2≤p+1且2p-1≤5.由-3≤p≤3.∴2≤p≤3②当B=时,即p+12p-1p<2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,AB等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.第6页共32页[例5]已知集合A={a,a+b,a+2b},B={a,ac,ac2}.若A=B,求c的值.分析:要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-21.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6]设A是实数集,满足若a∈A,则a11A,1a且1A.⑴若2∈A,则A中至少还有几个元素?求出这几个元素.⑵A能否为单元素集合?请说明理由.⑶若a∈A,证明:1-a1∈A.⑷求证:集合A中至少含有三个不同的元素.解:⑴2∈A-1∈A21∈A2∈A第7页共32页∴A中至少还有两个元素:-1和21⑵如果A为单元素集合,则a=a11即12aa=0该方程无实数解,故在实数范围内,A不可能是单元素集⑶a∈Aa11∈Aa1111∈A111aaA,即1-a1∈A⑷由⑶知a∈A时,a11∈A,1-a1∈A.现在证明a,1-a1,a11三数互不相等.①若a=a11,即a2-a+1=0,方程无解,∴a≠a11②若a=1-a1,即a2-a+1=0,方程无解∴a≠1-a1③若1-a1=a11,即a2-a+1=0,方程无解∴1-a1≠a11.综上所述,集合A中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.[例7]设集合A={a|a=12n,n∈N+},集合B={b|b=542kk,k∈N+},试证:AB.证明:任设a∈A,则a=12n=(n+2)2-4(n+2)+5(n∈N+),∵n∈N*,∴n+2∈N*第8页共32页∴a∈B故①显然,1*2,1|NnnaaA,而由B={b|b=542kk,k∈N+}={b|b=1)2(2k,k∈N+}知1∈B,于是A≠B②由①、②得AB.点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x2-3x-10≤0,x∈Z},B={x|2x2-x-6>0,x∈Z},则A∩B的非空真子集的个数为()A.16B.14C.15D.322.数集{1,2,x2-3}中的x不能取的数值的集合是()A.{2,-2}B.{-2,-5}C.{±2,±5}D.{5,-5}3.若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.PB.QC.D.不知道4.若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有()A.P∩Q=B.PQC.P=QD.PQ第9页共32页5.若集合M={11|xx},N={x|2x≤x},则MN=()A.}11|{xxB.}10|{xxC.}01|{xxD.6.已知集合A={x|x2+(m+2)x+1=0,x∈R},若A∩R+=,则实数m的取值范围是_________.7.(06高考全国II卷)设aR,函数2()22.fxaxxa若()0fx的解集为A,|13,BxxAB,求实数a的取值范围。8.已知集合A=012|2baxxx和B=0|2baxxx满足ICA∩B=2,A∩ICB=4,I=R,求实数a,b的值.§1.2.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、“非”分别用符号“”“”“”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题第10页共32页4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p或q;p且q;非p5.四种命题的构成:原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p.6.原命题与逆否命题同真同假,是等价命题,即“若p则q”“若q则p”.7.反证法:欲证“若p则q”,从“非q”出发,导出矛盾,从而知“若p则非q”为假,即“若p则q”为真.8.充分条件与必要条件:①pq:p是q的充分条件;q是p的必要条件;②pq:p是q的充要条件.9.常用的全称量词:“对所有的”、“对任意一个”“对一切”“对每一个”“任给”等;并用符号“”表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、“有的”、“对某个”;并用符号“”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;第11页共32页(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的.(4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明p的充要条件是q;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一.注:常见关键词的否定:关键词是都是(全是)()至少有一个至多有一个任意存在否定不是不都是(全是)()一个也没有至少有两个存在任意2.全称命题与特称命题的关系:全称命题p:)(,xpMx,它的否定p:)(,xpMx;特称命题p:)(,xpMx,它的否定p:)(,xpMx;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1]把命题“全等三角形一定相似”写成“若p则q”的形式,并写出它的逆
本文标题:高考数学复习系列(四)集合与常用逻辑用语篇
链接地址:https://www.777doc.com/doc-3342369 .html