您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 钢质散热器选择及散热计算
钢质散热器价格选择及散热计算金旗舰散热计算任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强冷却散热。在某些大型设备的功率器件上还采用流动冷水冷却板,它有更好的散热效果。散热计算就是在一定的工作条件下,通过计算来确定合适的散热措施及散热器。功率器件安装在散热器上。它的主要热流方向是由管芯传到器件的底部,经散热器将热量散到周围空间。若没有风扇以一定风速冷却,这称为自然冷却或自然对流散热。热量在传递过程有一定热阻。由器件管芯传到器件底部的热阻为RJC,器件底部与散热器之间的热阻为RCS,散热器将热量散到周围空间的热阻为RSA,总的热阻RJA=RJC+RCS+RSA。若器件的最大功率损耗为PD,并已知器件允许的结温为TJ、环境温度为TA,可以按下式求出允许的总热阻RJA。RJA≤(TJ-TA)/PD则计算最大允许的散热器到环境温度的热阻RSA为RSA≤({T_{J}-T_{A}}over{P_{D}})-(RJC+RCS)出于为设计留有余地的考虑,一般设TJ为125℃。环境温度也要考虑较坏的情况,一般设TA=40℃60℃。RJC的大小与管芯的尺寸封装结构有关,一般可以从器件的数据资料中找到。RCS的大小与安装技术及器件的封装有关。如果器件采用导热油脂或导热垫后,再与散热器安装,其RCS典型值为0.10.2℃/W;若器件底面不绝缘,需要另外加云母片绝缘,则其RCS可达1℃/W。PD为实际的最大损耗功率,可根据不同器件的工作条件计算而得。这样,RSA可以计算出来,根据计算的RSA值可选合适的散热器了。散热器简介小型散热器(或称散热片)由铝合金板料经冲压工艺及表面处理制成,而大型散热器由铝合金挤压形成型材,再经机械加工及表面处理制成。它们有各种形状及尺寸供不同器件安装及不同功耗的器件选用。散热器一般是标准件,也可提供型材,由用户根据要求切割成一定长度而制成非标准的散热器。散热器的表面处理有电泳涂漆或黑色氧极化处理,其目的是提高散热效率及绝缘性能。在自然冷却下可提高1015%,在通风冷却下可提高3%,电泳涂漆可耐压500800V。散热器厂家对不同型号的散热器给出热阻值或给出有关曲线,并且给出在不同散热条件下的不同热阻值。计算实例一功率运算放大器PA02(APEX公司产品)作低频功放,其电路如图1所示。器件为8引脚TO-3金属外壳封装。器件工作条件如下:工作电压VS为18V;负载阻抗RL为4,工作频率直流条件下可到5kHz,环境温度设为40℃,采用自然冷却。查PA02器件资料可知:静态电流IQ典型值为27mA,最大值为40mA;器件的RJC(从管芯到外壳)典型值为2.4℃/W,最大值为2.6℃/W。器件的功耗为PD:PD=PDQ+PDOUT式中PDQ为器件内部电路的功耗,PDOUT为输出功率的功耗。PDQ=IQ(VS+|-VS|),PDOUT=V^{2}_{S}/4RL,代入上式PD=IQ(VS+|-VS|)+V^{2}_{S}/4RL=37mA(36V)+18V2/44=21.6W式中静态电流取37mA。散热器热阻RSA计算:RSA≤({T_{J}-T_{A}}over{P_{D}})-(R_{JC}+R_{CS}})为留有余量,TJ设125℃,TA设为40℃,RJC取最大值(RJC=2.6℃/W),RCS取0.2℃/W,(PA02直接安装在散热器上,中间有导热油脂)。将上述数据代入公式得RSA≤{125℃-40℃}over{21.6W}-(2.6℃/W+0.2℃/W)≤1.135℃/WHSO4在自然对流时热阻为0.95℃/W,可满足散热要求。注意事项1.在计算中不能取器件数据资料中的最大功耗值,而要根据实际条件来计算;数据资料中的最大结温一般为150℃,在设计中留有余地取125℃,环境温度也不能取25℃(要考虑夏天及机箱的实际温度)。2.散热器的安装要考虑利于散热的方向,并且要在机箱或机壳上相应的位置开散热孔(使冷空气从底部进入,热空气从顶部散出)。3.若器件的外壳为一电极,则安装面不绝缘(与内部电路不绝缘)。安装时必须采用云母垫片来绝缘,以防止短路。4.器件的引脚要穿过散热器,在散热器上要钻孔。为防止引脚与孔壁相碰,应套上聚四氟乙稀套管。5.另外,不同型号的散热器在不同散热条件下有不同热阻,可供设计时参改,即在实际应用中可参照这些散热器的热阻来计算,并可采用相似的结构形状(截面积、周长)的型材组成的散热器来代用。6.在上述计算中,有些参数是设定的,与实际值可能有出入,代用的型号尺寸也不完全相同,所以在批量生产时应作模拟试验来证实散热器选择是否合适,必要时做一些修正(如型材的长度尺寸或改变型材的型号等)后才能作批量生产。印制电路板的热设计及其实施前言随着电予产品的轻薄小型化、高性能化,IC器件高集成化、引发印制电路板的集成度提高,发热量明显加大,特别是高频IC器件如A/D,D/A类的大量使用以及电路频率点的上移,PCB的热密度越来越大,如果散热问题解决不好,势必引起电路中半导体器件以及其它热敏感器件温度的升高,导致电路工作点的漂移和性能指标的下降,影响电路的稳定性和可靠性;特别对于机载、星载这类特殊环境中工作的电路,。热设计‘不合理可能会引发整个系统的失效,因此必须高度重视板级电路的热设计。PCB热设计的目的是采取适当的措施和方法降低元器件的温度和PCB板的温度,使系统在合适的温度下正常工作。本文主要从减少发热元件的发热量及加快散热等方面探讨板级电路热设计及其实现方法。1减小发热量PCB中热量的来源主要有三个方面:(1)电子元器件的发热;(2)PcB本身的发热;(3)其它部分传来的热。在这三个热源中,元器件的发热量最大,是主要热源,其次是PCB板产生的热,外部传入的热量取决于系统的总体热设计,这不在本文讨论范围。图1元器件的发热量是由其功耗决定的,因此在设计时首先应选用功耗小的元器件,尽量减小发热量。其次是元器件工作点的设定,一般应选择在其额定工作范围,在此范围内工作时性能佳,功耗小,寿命最长。功放类器件本身发热量就大,设计时尽量避免满负荷工作。对于大功率器件应贯彻降额设计的原则,适当加大设计富裕度,这无论是对于加大系统稳定性、可靠性和降低发热量都有好处。PCB板由于线路本身电阻发热,以及交流、高频激化生热。PCB是由铜导体和绝缘介质材料组成,一般认为绝缘介质材料不发热。铜导体图形由于铜本身存在电阻,当电流通过时就发热,象mA(毫安)、uA(微安)级那样的小电流通过时,发热问题可忽略不计,但当大电流(百毫安级以上)通过时就不能忽视。值得注意的是,当导体图形温度上升到85℃左右时,绝缘材料自身开始发黄(图1),电流继续通过,最后铜图形熔断,特别是多层板内层图形,周围都是传热性差的树脂,散热困难,因而温度不可避免地上升,所以特别要注意导体图形线宽的设计。实际上在进行PCB布线设计时走线线宽主要依据其发热量和散热环境来确定的。铜导体的截面积决定了导线电阻(数字电路中线电阻引起的信号损耗可忽略不计),铜导体和绝缘基材的导热率影响温升,进而决定载流量。图2是普通FR-4覆铜箔板铜导体图形线宽及截面积与允许电流之间的关系图。从图中可以看出:导体图形截面积一定,当其允许电流值为2A,温度上升值低于10℃时,对于35Um铜箔,其线宽应设计为2mm:对于70um铜箔,其线宽应设计为lmm。由此得出:当导体的截面积、允许电流和温度上升值一定时,可通过增加铜箔厚度或加大线宽值两个方面来满足走线的散热要求。2加快散热在给定条件下,当板级电路中元器件温度上升到超过可靠性保证温度时,便要采取适当的散热对策,使其温度降低到可靠性工作范围内,这就是我们进行热设计的最终目的。散热是PCB热设计的主要内容。对于PCB来说,其散热无外乎三种基本类型一一导热、对流、辐射。辐射是利用通过空间的电磁波运动将热量散发出去,其散热量较小,通常作为辅助散热手段。导热和对流是主要散热手段,我们常用的散热方式一一用散热器将热量从热源上传导出来,利用空气对流散发出去。2.1通过元器件优化排列改善散热2.1.1按散热要求进行元件布置交错分散排列。在布板设计进行元件布局时,应将发热元器件与一般器件及温度敏感器件区分开,发热器件周围应留有足够的散热气体流动通道,发热元件应错开分散排列,如图3所示。这与通常布局时的整齐划一排列恰好相反,有利于改善散热效果。当热性能不同的元件混合安装时,最好将发热量大的元件安装在下风处,放热小的元件安装在上风处。图4显示元件的常规排列,图4(b)是将发热大的元件安装在上风处,发热小的元件(C、IC等)安装在下风处,这样耐热差的元件会处在发元件散热的路径上,其结果是耐热性差的元件处较高温度处。所以,元件最好按图4(a)排列,实际上,导体图形设计要达到图4(a)的理想排列仍有困难。热性能相同发热元器件布置:图5显示PCB上安装IC(0.3W),LSI(1.5W)时温度上升的实测值。按图5(a)排列,IC的温度上升值是18℃-30℃,LSI温度上升值是50℃。按图5(b)排列,LSI温度上升值是40℃,比图5(a)排列还要低10℃。因此,具有相同水平的耐热元件混合排列时,基本排列顺序是:耗电大的元件、散热性差的元件应装在上风处。2.1.2高发热器件加散热器、导热板当PCB中有少数器件发热量较大时(少于3个)时,可在发热器件上加散热器或导热管,当温度还不能降下来时,可采用带风扇的散热器,以增强散热效果。当发热器件量较多时(多于3个),可采用大的散热罩(板),它是按PCB板上发热器件的位置和高低而定制的专用散热器或是在一个大的平板散热器上抠出不同的元件高低位置。将散热罩整体扣在元件面上,与每个元件接触而散热。但由于元器件装焊时高低一致性差,散热效果并不好。通常在元器件面上加柔软的热相变导热垫来改善散热效果。2.2通过PCB板本身散热目前广泛应用的PCB板材是覆铜/环氧玻璃布基材或酚醛树脂玻璃布基材,还有少量使用的纸基覆铜板材。这些基材虽然具有优良的电气性能和加工性能,但散热性差,作为高发热元件的散热途径,几乎不能指望由PCB本身树脂传导热量,而是从元件的表面向周围空气中散热。但随着电子产品已进入到部件小型化、高密度安装、高发热化组装时代,若只靠表面积十分小的元件表面来散热是非常不够的。同时由于QFP、BGA等表面安装元件的大量使用,元器件产生的热量大量地传给PCB板,因此,解决散热的最好方法是提高与发热元件直接接触的PCB自身的散热能力,通过PCB板传导出去或散发出去。2.2.1选用导热性良好的板材现今大量使用的环氧玻璃布类板材,其导热系数一股为0.2W/m℃。普通的电子电路由于发热量小,通常采用环氧玻璃布类基材制作,其产生的少量热量一般通过走线热设计和元器件本身散发出去。随着元件小型化、高集成化,高频化,其热密度明显加大,特别是功率器件的使用,为满足这种高散热要求后来开发出了一些新型导热性板材。如美国研制的T-Lam板材,它是在树脂内填充了高导热性的氮化硼粉,使其导热系数提高到4W/m℃,是普通环氧玻璃布类基材的20倍。美国Rogers公司开发的复合基材RO4000系列和TMM系列,它是在改性树脂中添加了陶瓷粉,使其导热系数提高到(0.6-1)W/m℃,是普通环氧玻璃布类基材的3—5倍,也是一种不错的选择。还有就是陶瓷基板,它是由纯度为92%-96%的氧化铝(AI2O3)制成,其导热系数提高到10W/m℃,是普通环氧玻璃布类基材的50倍,它大量使用在混合IC,微波集成器件以及功率组件中,是导热性良好基板材料。还有就是导热性较好的SiC和AIN等材料,其作为PCB基材应用还在进一步研究中。2.2.2采用合理的走线设计实现散热由于板材中的树脂导热性差,而铜箔线路和孔是热的良导体,因此提高铜箔剩余率和增加导热孔是散热的
本文标题:钢质散热器选择及散热计算
链接地址:https://www.777doc.com/doc-3363586 .html