您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 微电子器件-课后答案-(第三版)
部分习题解答部分物理常数:191412S103Gi1412S133Gi1.610C,0.026V(300k),(Si)11.88.854101.04510Fcm,(Si)1.09eV,(Si)1.510cm,(Ge)168.854101.41710Fcm,(Ge)0.66eV,(Ge)2.410cm,qkTqTEnEnεε−−−−−−−=×===××=×==×=××=×==×1413OX3.98.854103.45310Fcmε−−=××=×第2章1、在N区耗尽区中,高斯定理为:DddAVsqEANvε=∫∫取一个圆柱形体积,底面在PN结的冶金结面(即原点)处,面积为一个单位面积,顶面位于x处。则由高斯定理可得:()()()nDns0qExxxNxxε=−≤≤()maxDsqEExNxε−+=当x=xn时,E(x)=0,因此,于是得:maxDnsqENxε=−(2-5a)3、32ADbi220i510(1)ln0.026ln0.739V2.2510NNkTVqn×==×=×5SpmaxA6SnmaxD125SbiSbidpnmax0max0(2)2.8310cm5.6710cm223.4010cmxEqNxEqNVVxxxEqNEqNεεεε−−−==×==×=+====×124-10bimaxS2(3)4.3410VcmqNVEε==×4、()()11112222SSbibidbibid000bibi22VVVxVVVVxqNqNVVεε−=−=−=bidd032VVxx=−=当时,bidd083VVxx=−=当时,D1D1D2D2nnnnnD1biD2203163D1D24bid0d1d1ddlnddddln|ln0.026V,110cm,110cm0.026ln(10)0.24VNNNNnJqDqnExDnkTnkTnEnxqnxqxNkTkTVExnqqNkTNNqVµµ−−=+==−⋅⋅=−⋅⋅=−⋅=−====×=×==∫由平衡时多子电流为零得:将代入,得:6、ND2ND10120bimaxs153DADA0Dbi2DAi761d1d()d()d()exp()0.026V,0.4μm650Vcm2||10cm,ln0.757V,1.610kTnkTNxEqnxqNxxxkTNxNEqkTEqqNVENNNNkTNNVNNqnqλλλε−−=−⋅⋅=−⋅⋅=−======≈===+=×、由第题:将代入,得:再将代入,得:突变结的最大电场强度表达式为:式中:1912S4maxmaxC,1.04510Fcm,||||1.5210VcmEEε−=×=×代入中,得:1D1D1i1n11Di1ns22max3A3A3ssi2p33Ai2psdN,d0()dI0,ddP,d0()ssEqqNENxCxqxxxEENxxxEEExEqqNENxCxqxxxEENxxxεεεεεε==+=−−==++====−=−+=+==−−−在型区,边界条件:在处,,由此得:在型区,常数在型区,边界条件:在处,,由此得:8、(1)0i1x−i1nxx−−i2xi2pxx+NIPsmaxi11maxDnnsDsmaxi23maxAppsA,,EqxxEENxxqNEqxxEENxxqNεεεε=−=======在处,由此得:在处,由此得:i2xi1x−0E1E2maxEE=3Ex0i1x−i1nxx−−i2xi2pxx+NIPi2pxx+i1nxx−−i1i21Dn3ApsmaxDnApssIPN0,0,(),()0sqqxxENxxENxxqqxENxNxεεεε===+=−−===对于无型区的结:在处,电场达到最大,(2)maxbinpmaxEVxxE表面上,两种结构的的表达式相同,但由于两种结构的掺杂相同,因而相同(即电场曲线与横轴所围面积相同),所以两种结构的、与并不相同。0E1EmaxE3ExsmaxsmaxnpmaxDA120isbimax2s0i,211EExxEqNqNqNxVEqNxεεεε===+−将代入,解出,得:120biimaxsimaximax2PN0,0qNVxExExEε→=→∞→对于结,可令,得:当增大时,减小当时,DAbimaxnmaximaxp2ibimaxnipii1i2PIN11ln2222NNkTVExExExqnVExxxxxx=++==++=+对于结:式中,ppApAnnDnD2pidppD2nidnnAdpnpApAndnpnDpnD1exp1exp11qNNqNNqDnqVJLNkTqDnqVJLNkTJLDNNLJLDNLNσµµσµµµµ===−=−==⋅已知:由于因此20、24、PN结的正向扩散电流为0expqVIIkT=式中的I0因含ni2而与温度关系密切,因此正向扩散电流可表为2G1i2expexpEqVqVICnCkTkT−+==于是PN结正向扩散电流的温度系数与相对温度系数分别为GGG222dexpdEqVEqVEqVICITkTkTkT−+−+−==−G21ddEqVIITkT−⋅=31、当N-区足够长时,开始发生雪崩击穿的耗尽区宽度为:BdBC221449μm32VxE×===当N-区缩短到W=3µm时,雪崩击穿电压成为:22dBBBdB93'1144180V9xWVVx−−=−=−=()12s0T1bi2bibiTT2()0.6V,3V10pF,3.6103.6,0.2V103.610930(pF)0.4qNKCAVVVVKVVCKVCε==−−==−=======已知对于单边突变结,当时,由此可得因此当时,34、F0FFDFDDDDDDexpdd300K,0.026V,10mA0.01A1010.385s,2.626373100C0.0260.0323V,3001010.309s,3.2332.3qVIIkTIqIgVkTkTTIqgrgkTqgrg===========Ω°=×=====Ω当时对于,在时,39、第3章1、NPN缓变基区晶体管在平衡时的能带图NPN缓变基区晶体管在放大区时的能带图2、NPN缓变基区晶体管在放大区时的少子分布图E0pC0pB0n3、C1B180IIβ==CCC2C10BBB2B1d100dIIIIIIIIβ∆−=≈==∆−BBnEBnEBBB241921nEBB123B2BEiBEBp0BBBBEBBi2i(0),(0),0.1cm,210cm,1.610C,15cms(0)8.3310cm(0)expexp(0)ln,(0)qDnJWJnWqDJAWqDnqVnqVnnkTNkTnNkTkTVnNnqnq−−−−−====×=×=⋅=×===由可得:将之值代入,得:又由,得:将、、及之值代BE226BBnBBBBn0.55V111,10s220.9987Vβττβ∗−∗==−=−==入,得:已知:将及、之值代入,得:。6、7、211BbB2111.12510s2WDτηη−=⋅−=×()8、以NPN管为例,当基区与发射区都是非均匀掺杂时,由式(3-33a)和式(3-33b),B222BiBEEBiBEnEBOB0exp1exp1dWqDnqVAqDnqVJkTQkTNx=−=−∫E222EiBEEEiBEpEEOE0exp1exp1dWqDnqVAqDnqVJkTQkTNx=−=−∫再根据注入效率的定义,可得:11pEBOEnEnEEnEpEnEBEB11JQDJJJJJJQDγ−−===+=++2BiBECEnCEnEEBB22BBBBB4219E211034BiB173BBEexp1110.99862210μm0.9986,1.610C,18cms,1.510cm,0.710cm10cm,0.7V,0.026VqDnqVIAJAJAWNkTWWLDAqDnWkTNVqβββτβ∗∗∗∗−−−−−====−=−====×=⋅=×=×===式中,将,,之值代入,得:CCB4.55(mA)0.9936,155,0.029(mA)1IIIααγββαβ∗=======−9、EEBOEEBBEBBBEOBBEBBE00119BOBBBEO2121EB111dd3.210C,1.2810C2cms,18cms,0.9972WWQDDWNDAqWNQDDNxDAqNxQAqWNQDDγγγ−−−−=−=−=−==×=×===∫∫式中,,代入中,得:10、(1)(2)2BBB10.99992WDβτ∗=−=0.99713441ααγββα∗====−,(3)(4)EOBBOEEOBBOE1'|'|'360,||4.7%QDQDQDeQDβββββββ∗=≈−≈===当由基区输运造成的亏损非常小时,可假设,这时可用来代替。误差为:14、BCbQIτ=已知CBBb104IIτβτ==所以本题与第题的第()小题分别是两种极端情况。BBrB1QIIγτ===若假设,则pBBEBBnBBnpnpnpBEEnEEpEEnpnpnpnpnp222**BBBnpnpnpBBnnpp*npnpnpnpnp11,1,,1,1,1222,,DWNDWNDWNDWNDWNDWNDkTDqDDγγγµµµµγγβββτττµµββ∗∗=−=−=−=∝∴=−=−=−∴,由可知,15、20、当忽略基区中的少子复合及ICEO时,B2BiBECnEEB0exp1dWqDnqVIIAkTNx==−∫()BEBBBB2CCEBEEBi2oCEB0d()d1exp1dVWWNWIVqVAqDnrVkTNx−⋅∂≡=−⋅∂∫BBBBCECB0d()ddWWNWVINx−⋅=⋅∫CAIV≡CBBABCEBdBCECBBEBBECECBAdBCB12sCbiCBdBBCB12dBsCCBBCBbiCB12BCBbiA0BsCdddd,dd,dd2()()dd2()()2()|VWVWVWxVVVWVVVVxVNVVxqNNNxNVqNNNVVqNNNVVWNεεε=−==−=+==+=+=+++=对均匀基区,式中,因保持不变,所以于是:BBABBB0CEdd()dWWVNxNWV=−⋅∫27、实质上是ICS。CB12BCBbiA0BsC2()|126VVqNNNVVWNε=+==22、33BCbi220i110ln0.026ln0.757V2.2510NNkTVqn×==×=×使NBNC,这样集电结耗尽区主要向集电区延伸,可使基区不易穿通。39、为提高穿通电压Vpt,应当增大WB和NB,但这恰好与提高β相矛盾。解决方法:48、当IE很大时,这时α0α;当IE很小时,这时α0α;CBOECIII+=α在IE很小或很大时,α都会有所下降。,0ddEIα在正常的IE范围内,α几乎不随IE变化,这时,0ddEIα,0ddE=Iαβ0与β也有类似的关系。CE0EEEEdd()ddddIIIIIIαααα===+2EB02B1B21112RWRLααηη==−−⋅−口口TTC1T1C2T2TdcTTebbebeTETETEEC||1mA4100400MHz4mA4.5100450MHz500MHz,12()fffIfIffffkTkTrCCCqIqIωβττπτττ===
本文标题:微电子器件-课后答案-(第三版)
链接地址:https://www.777doc.com/doc-3366783 .html