您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 第2章 动态系统的状态空间描述(V1A2AA)
第2章线性系统的状态空间描述引言经典控制理论以系统的输出输入特性为研究依据,对线性定常连续系统,其基本数学模型为线性定常高阶微分方程、传递函数;对线性定常离散系统,其基本数学模型则为线性定常高阶差分方程、脉冲传递函数。但这些模型仅仅描述了系统输入、输出之间的外部特性,不能揭示系统内部各物理量的运动规律,若要完全揭示整个系统的全部运动状况,仅凭输入、输出描述是不够的,即系统的输入、输出描述是一种不完全的描述。20世纪60年代,人们将状态空间的概念引入控制理论,产生了以状态空间描述为基础,最优控制为核心的现代控制理论。系统动态特性的状态空间描述由两个数学方程组成,一个是反映系统内部状态变量和输入变量间因果关系的状态方程;另一个是表征系统内部状态变量及输入变量与输出变量转换关系的输出方程。系统的状态空间描述不仅描述了系统输入、输出外部特性,而且揭示了系统内部的结构特性,能完全表征系统的所有动力学特征,因而是对系统的一种完全的描述。建立动态系统的状态空间模型是状态空间分析和综合的基本问题和前提。本章在介绍状态空间分析法基本概念的基础上,讨论状态空间描述的内涵、形式(连续、离散)、建立方法(机理、实现)、特性(线性定常系统的特征值和特征向量)动态系统数学模型的等效变换(状态向量的线性变换与状态空间表达式标准型、线性定常系统的固有特性在线性非奇异变换下保持不变);研究组合系统(串、并联,反馈)的状态空间描述。2.1动态系统的状态空间模型2.1.1状态空间的基本概念2.1.2动态系统状态空间表达式的一般形式2.1.3状态空间模型的图示2.1.4由系统机理建立状态空间模型示例2.1.1状态空间的基本概念1.系统的基本概念2.动态系统的两类数学描述3.系统状态空间描述的基本概念1.系统的基本概念■系统:是由相互制约的各个部分有机结合,且具有一定功能的整体。■静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。静态系统亦称为无记忆系统。静态系统的输入、输出关系为代数方程。■动态系统:对任意时刻,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0t)时刻以初值体现出来),这类系统称为动态系统。由于t0时刻的初值含有过去运动的累积,故动态系统亦称为有记忆系统。动态系统的输入、输出关系为微分方程。连续系统:变量的作用时刻是连续的。(微分方程)离散系统:输入、输出和状态变量只在某些离散采样时刻取值的系统。(差分方程)数字计算机只能处理数字信号,其不仅在数值上整量化,且在时间上离散化为了对计算机数字控制系统进行分析与综合,需要对连续被控对象离散化;另一方面,在已知各状态变量初始值的条件下,将连续状态方程离散化,应用数字计算机可十分容易地从初始时刻递推求出各采样时刻的状态变量值,得到连续状态方程近似数值解,从而避免数值积分方法繁琐的求解计算。2.动态系统的两类数学描述(1)外部描述外部描述通常称为输入、输出描述,这种描述把系统的输出取为系统外部输入的直接响应,显然这种描述回避了表征系统内部的动态过程即把系统当成一个“黑匣”,认为系统的内部结构和内部信息全然不知,系统描述直接反映了输出变量与输入变量间的动态因果关系。考察图示n级RC网络。图中虚线框内为具有放大器隔离的n级RC电路,设放大器的输入阻抗为无穷大,输出阻抗为零,放大倍数为1。n级RC网络buyayayaynnnn)1(1)1(1)((1-3)在已知输入u的情况下,解方程式(1-3),可求出输出响应y,但不能得知系统内部电容上电压随时间变化的动态过程。如同经典控制理论中所熟知的,系统以输入u、输出y作为变量的外部描述为式(1-3)所示的高阶线性常系数微分方程,即(2)内部描述状态空间描述是内部描述的基本形式,这种描述是基于系统内部结构分析的一类数学模型。其由两个数学方程组成:一个是反映系统内部状态变量x1,x2,…,xn和输入变量u1,u2,…,ur间因果关系的数学表达式,称为状态方程,其数学表达式的形式对于连续时间系统为一阶微分方程组,对于离散时间系统为一阶差分方程组;x(2)内部描述另一个是表征系统内部状态变量x1,x2,…,xn及输入变量u1,u2,…,ur与输出变量y1,y2,…,ym转换关系的数学表达式,称为输出方程,其数学表达式的形式为代数方程。重新考察图1-4的电网络,利用电路知识容易得到如下一阶微分方程组x)1(122222211111111dd11dd11ddncnncnnncncccccuCRuCRtuuCRuCRtuuCRuCRtu(1)及cnLLuRRRy0(2)在已知输入u的情况下,解方程式(1)、式(2),不仅可求出输出响应y,而且能得知系统内部电容上电压随时间变化的动态过程信息。因此,式(1)、式(2)是图示电网络系统的一种完全描述。3.系统状态空间描述的基本概念(1)动态系统的状态动态系统的状态是完全地描述动态系统运动状况的信息,系统在某一时刻的运动状况可以用该时刻系统运动的一组信息表征,定义系统运动信息的集合为状态。(2)状态变量定义完全表征动态系统时间域运动行为的信息组中的元素为状态变量。状态变量组常用符号x1(t),x2(t),…,xn(t)表示,且它们相互独立(即变量的数目最小)。【例】确定图示电路的状态变量。RLC电路要惟一地确定t时刻电路的运动行为,除了要知道输入电压u(t)外,还必须给出流过电感上的初始电流i(t0)和电容上的初始电压uC(t0),或者说uC(t)和i(t)这两个变量可用来完全地描述该电路的运动行为,且它们之间是独立的,故uC(t)和i(t)是该电路的状态变量。(3)状态向量设x1(t),x2(t),…,xn(t)是系统的一组状态变量,把这些状态变量看做向量x(t)的分量,则x(t)就称为状态向量,记为)()()(1txtxtnx(4)状态空间以x1(t),x2(t),…,xn(t)为坐标轴构成的一个n维欧氏空间,称为状态空间。(5)状态轨迹状态向量的端点在状态空间中的位置代表了某一特定时刻系统的状态。系统的状态是时间t的函数。在不同时刻,系统状态不同,则随着t的变化,状态向量的端点不断移动,其移动的路径就称为系统的状态轨迹。(6)状态方程描述系统状态变量间或状态变量与系统输入变量间关系的一个一阶微分方程组(连续系统)或一阶差分方程组(离散系统),称为状态方程。【例】建立前图所示RLC电路的状态方程。取电容上的电压uC(t)和电感中的电流i(t)作为状态变量,根据电路原理有)()()(d)(d)(d)(dtututRittiLtittuCcc(6)将式(6)中状态变量的一阶导数放在方程左边,其余项移至方程右边,整理得一阶微分方程组为)(1)()(1d)(d)(1d)(dtuLtiLRtuLttitiCttucc(7)式(7)即为图示电路的状态方程,并将其写成向量-矩阵形式,即)(10)()(110d)(dd)(dtuLtituLRLCttittucc(8)式(8)可简写为)(),(21tixtuxc21xxx21d)(dxxttxx令,记,,uBAxx(9)式中,LRLC110AL10B,(7)输出方程在指定系统输出的情况下,该输出与状态变量及输入变量间的函数关系式称为系统的输出方程。上例中,若指定uC(t)为输出,且输出一般用y(t)表示,则输出方程为1)()(xtutyc(10)将式(10)写成写成向量-矩阵形式,得)()(01)(titutyc2101xxy或(11)式(11)可简写成Cxy(12)式中,]01[C。(8)状态空间表达式状态方程和输出方程合起来构成对一个动态系统完整的描述,称为动态系统的状态空间表达式。图示RLC电路,若uC(t)为输出,取x1=uC(t),x2=i(t)作为状态变量,则其状态空间表达式为2121210110110xxyuLxxLRLCxx(13)为正确理解状态空间的基本概念,应注意如下几点:■系统输出和系统状态在概念上的不同■状态变量的非惟一性■任意两组状态变量之间的关系同一系统所任意选取的两个状态向量之间为线性非奇异变换关系。■线性非奇异变换下,系统任意两个状态空间表达式的关系系统的状态空间表达式不具有惟一性,选取不同的状态变量,便会有不同的状态空间表达式,但它们均描绘同一系统。对于一个动态系统,一组状态变量下的状态空间表达式可用另一组状态变量下的状态空间表达式经线性非奇异变换得到。(9)工程问题中状态变量的选取■动态系统需用微分方程描述是因为动态系统含有储能元件,因而,动态系统是一个能存储输入信息的系统。对同一系统的任何一种不同的状态空间表达式而言,其状态变量的数目是惟一的,必等于系统的阶数,即系统中独立储能元件的个数。在具体工程问题中,可选取独立储能元件的能量方程中的物理变量作为系统的状态变量。(9)工程问题中状态变量的选取■状态变量不一定是物理可测量的,有时仅有数学意义而无任何物理意义。在具体工程问题中,为了实现状态的反馈控制,以选择容易测量的量作为状态变量为宜,例如,选择机械系统中的线(角)位移和线(角)速度作为状态变量,电路中电容上的电压和流经电感的电流作为状态变量。2.1.2动态系统状态空间表达式的一般形式1.单输入单输出线性定常连续系统设单输入单输出线性定常n阶连续系统,n个状态变量为x1(t),x2(t),…,xn(t),其状态方程的一般形式为(23)ubxaxaxaxubxaxaxaxubxaxaxaxnnnnnnnnnnn2211222221212112121111输出方程的一般形式为Duxcxcxcynn2211(24)则其向量-矩阵方程形式的状态空间表达式为Duxxxcccyubbbxxxaaaaaaaaaxxxnnnnnnnnnnn2121212121222211121121(25)式(25)简记为DuyuCxBAxx(26)式中,T21nxxxx为n维状态向量;nnnnnnaaaaaaaaa212222111211A称为系统矩阵或状态矩阵;nbbb21B称为输入矩阵或控制矩阵;][21ncccC称为输出矩阵或观测矩阵;D是标量,反映输出与输入的直接关联。2.多输入多输出线性定常连续系统对于有r个输入u1,u2,…,ur,m个输出y1,y2,…,ym的多输人多输出n阶线性定常连续系统,状态方程的一般形式为rnrnnnnnnnnrrnnrrnnubububxaxaxaxubububxaxaxaxubububxaxaxax22112211222212122221212121211112121111(1-27)输出方程的一般形式为rmrmmnmnmmmrrnnrrnnudududxcxcxcyudududxcxcxcyudududxcxcxcy22112211222212122221212121211112121111(1-28)则其向量-矩阵方程形式的状态空间表达式为
本文标题:第2章 动态系统的状态空间描述(V1A2AA)
链接地址:https://www.777doc.com/doc-3369879 .html