您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 第2课时能得到直角三角形吗.
问题1在一个直角三角形中三条边满足什么样的关系呢?问题2如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?答:在一个直角三角形中两直角边的平方和等于斜边的平方下面有三组数分别是一个三角形的三边长a,b,c:①5,12,13;②7,24,25;③8,15,17.回答这样两个问题:1.这三组数都满足a2+b2=c2吗?2.分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?实验结果:①5,12,13满足a2+b2=c2,可以构成直角三角形;②7,24,25满足a2+b2=c2,可以构成直角三角形;③8,15,17满足a2+b2=c2,可以构成直角三角形.72425513121781501801501209060300180150120906030从刚才的分组实验,有什么样的结论发现吗?如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.有同学认为测量结果可能有误差,不同意这个发现.你觉得这个发现正确吗?你能给出一个更有说服力的理由吗?进入acbACBbaC1MNB1A1已知:在△ABC中,三边长分别为a,b,c,且a2+b2=c2.你能否判断△ABC是直角三角形?并说明理由.简要说明:作一个直角∠MC1N,在C1M上截取C1B1=a=CB,在C1N上截取C1A1=b=CA,连接A1B1.在Rt△A1C1B1中,由勾股定理,得A1B12=a2+b2=AB2.∴A1B1=AB.∴△ABC≌△A1B1C1.(SSS)∴∠C=∠C1=90°.∴△ABC是直角三角形.提问1同学们还能找出哪些勾股数呢?提问3到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?提问2今天的结论与前面学习的勾股定理有哪些异同呢?如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.提问4:通过今天同学们的合作探究,你能体验出一个数学结论的发现往往要经历哪些过程?数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊—一般—特殊”的发展规律.1.下列几组数据能否作为直角三角形的三边?(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,22.2.一个三角形的三边的长分别是15cm,20cm,25cm,则这个三角形的面积是()cm2.(A)250(B)150(C)200(D)不能确定3.如图,在△ABC中,AD⊥BC于D,BD=9,AD=12,AC=20,则△ABC是().(A)等腰三角形(B)锐角三角形(C)钝角三角形(D)直角三角形4.将直角三角形的三边同时扩大相同的倍数后,得到的三角形是().(A)直角三角形(B)锐角三角形(C)钝角三角形(D)不能确定ABDC登高望远练习1练习21.一个零件的形状如图(a)所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边尺寸如图(b)所示,这个零件合格吗?ABCDABCD3451213(a)(b)解答:符合要求,∵32+42=52∴∠A=90°,又∵52+122=132∴∠DBC=90°登高望远练习1练习22.一艘在海上朝正北方向航行的轮船,在航行240海里时方位仪坏了,凭经验,船长指挥船左传90°,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?解:由题意画出相应的图形AB=240海里,BC=70海里,AC=250海里;在△ABC中AC2-AB2=2502-2402=(250+240)(250-240)=4900=702=BC2即AB2+BC2=AC2∴△ABC是Rt△答:船转弯后,是沿正西方向航行的。ABC北FEDABC1.如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?与你的同伴交流。412243易知:△ABE,△DEF,△FCB均为Rt△由勾股定理知BE2=22+42=20,EF2=22+12=5,BF2=32+42=25∴BE2+EF2=BF2∴△BEF是Rt△2.如图,哪些是直角三角形,哪些不是,说说你的理由?①②③④⑤⑥答案:④⑤是直角三角形①②③⑥不是直角三角形操场石室联中平面图综合楼二教楼一教楼两点之间,线段最短BA在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?蚂蚁A→B的路线BAA’dABA’ABBAO下一页ABA’BAA’rOh怎样计算AB?在Rt△AA’B中,利用勾股定理可得,222'BAAAAB侧面展开图其中AA’是圆柱体的高,A’B是底面圆周长的一半(πr)若已知圆柱体高为12cm,底面半径为3cm,π取3,则:15)33(12222ABABBAA’3O12侧面展开图123πAA’B你学会了吗?(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?250040302222ABAD25002BD222BDABAD∴AD和AB垂直李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?小试牛刀练习1练习2练习31.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6km/h的速度向正东行走,1小时后乙出发,他以5km/h的速度向正北行走。上午10:00,甲、乙两人相距多远?北东CBA解:如图:已知A是甲、乙的出发点,10:00甲到达B点,乙到达C点.则:AB=2×6=12(千米)AC=1×5=5(千米)在Rt△ABC中22222213169125ABACBC∴BC=13(千米)即甲乙两人相距13千米小试牛刀练习1练习2练习32.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离。3220BA2222256252015AB小试牛刀练习1练习2练习33.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?你能画出示意图吗?解:设伸入油桶中的长度为x米,则最长时:5.225.1222xx最短时:∴最长是2.5+0.5=3(米)5.1x答:这根铁棒的长应在2-3米之间∴最短是1.5+0.5=2(米)举一反三练习1练习21.如图,在棱长为10厘米的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1厘米/秒,且速度保持不变,问蚂蚁能否在20秒内从A爬到B?B食物A举一反三练习1练习21.如图,在棱长为10厘米的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1厘米/秒,且速度保持不变,问蚂蚁能否在20秒内从A爬到B?BAB举一反三练习1练习2中国古代人民的聪明才智真是令人赞叹!2.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?举一反三练习1练习2解:设水池的水深AC为x尺,则这根芦苇长为AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺由勾股定理得:BC2+AC2=AB2即52+x2=(x+1)225+x2=x2+2x+1,2x=24,∴x=12,x+1=13答:水池的水深12尺,这根芦苇长13尺。
本文标题:第2课时能得到直角三角形吗.
链接地址:https://www.777doc.com/doc-3371826 .html